
Designing Performance Measures to
Evaluate Protein Generative Models

Master Thesis

Philip Jean Hartout

July 11, 2022

Advisors: Tim Kucera, Leslie O’Bray, Prof. Dr. Karsten Michael Borgwardt

Department of Biosystems Science and Engineering, ETH Zürich

Acknowledgments

First, I would like to thank my supervisors Tim Kucera and Leslie O’Bray
for their insightful and enriching discussions throughout the research and
writing process of this thesis. Their support and collegiality was both very
helpful and enjoyable. Second, I want to thank Prof. Dr. Karsten Borgwardt
for guiding the search for the topic that lead to this thesis and providing an
excellent environment to conduct the research presented in this document.

Third, I want to also thank Bas Straathof for proof-reading parts of this thesis
and providing helpful feedback. Lastly, I want to thank my partner Emily,
my sister Flore, my parents, and my family for supporting me throughout
my studies and without whom the following could not have been achieved.

i

Abstract

Generative models applied to proteins are poised to revolutionize the
in silico design of novel proteins satisfying various functional and topo-
logical constraints. However, such models are notoriously hard to eval-
uate. The Maximum Mean Discrepancy (MMD), a statistic used in
a kernel two-sample test, has emerged as a highly versatile evaluation
metric used to evaluate generative graph models. This versatility is due
to the fact that any kernel, and, therefore, any appropriate underlying
data representation, can be used. This makes it relevant for proteins,
because they can be represented as graphs, point clouds, and sequences
of amino acids. In this thesis, we aim to evaluate the applicability of
different representations, descriptor functions and kernel combinations
for use in Maximum Mean Discrepancy (MMD) to design relevant met-
rics to evaluate generative models operating in the protein domain.
Through a set of graph-based and point cloud-based perturbation ex-
periments, we first evaluate various configurations of graph descriptors
traditionally used to evaluate generative graph models. Second, we ex-
pand the use of MMD to encompass previously unused configurations,
such as (i) graph kernels, (ii) novel protein descriptor functions tailored
to evaluate structural properties of proteins such has the dihedral an-
gles histogram formed by each pair of amino acid, and the histogram
of pairwise distances between amino acids, and (iii) kernels operating
on topological descriptors of proteins. Using meta-metrics that accu-
rately capture the desiderata of suitable metrics (expressivity, robustness
and efficiency), we find that there are multiple configurations of MMD
that accurately gauge the quality of proteins.

ii

Contents

Contents iii

List of Figures v

List of Tables vi

1 Introduction 1

2 Background and Related Work 4
2.1 Proteins . 4
2.2 Graphs . 6
2.3 Topological Data Analysis . 6
2.4 Generative Models . 8
2.5 The Evaluation Problem . 10
2.6 Maximum Mean Discrepancy 12
2.7 Kernels . 15
2.8 Summary . 18

3 Methods 20
3.1 Datasets . 21
3.2 Perturbations . 21
3.3 MMD Configurations . 24

3.3.1 Representations . 24
3.3.2 Descriptor Functions . 25
3.3.3 Kernels . 26

3.4 Experimental Setup . 27
3.4.1 Measuring the Quality of MMD Configurations 27
3.4.2 Software Library Design 28

3.5 Summary . 28

4 Results 29
4.1 Overall MMD Behavior . 29

4.1.1 General observations on the correlation coefficients . . 29
4.1.2 General observations on the standard deviations . . . 29

iii

Contents

4.1.3 Influence of the choice of kernel 32
4.2 Influence of the Graph Representation on MMD 32

4.2.1 Comparing Graph Construction Technique 32
4.2.2 Lower Values of ε Are More Stable 32
4.2.3 Lower ε Values for Graph Contruction Are More Sen-

sitive to Lower Perturbation Regimes 35
4.3 Graph Kernels . 39

4.3.1 Quality of MMD Using Weisfeiler-Lehman 39
4.3.2 Insensitivty in Low Perturbation Regimes 39

4.4 Protein-Specific Descriptors Are Inexpensive, High-Quality De-
scriptor Functions . 41
4.4.1 Dihedral Angles Histograms 41
4.4.2 α-Carbon Distance Histogram 42

4.5 MMD from Learned Embeddings 45
4.6 Topological Descriptors and Kernels 47
4.7 Runtime . 49
4.8 Summary . 51

5 Discussion 53
5.1 Key Findings . 53
5.2 MMD in Practice: Recommendations 54

5.2.1 Setting Up Appropriate Baselines 55
5.2.2 Taking MMD Sensitivity into Consideration 55
5.2.3 Assessing Realistic Proteins 56
5.2.4 Choosing the Right Kernel and Kernel Parameters . . 56

5.3 Limitations and Future Directions 56
5.3.1 Establishing Pseudo-Negative Controls 57
5.3.2 Limitations and Future Directions of Topological Data

Analysis (TDA) in MMD 57
5.3.3 MMD and Mode Collapse 57
5.3.4 Kernel Composition . 58

5.4 Summary . 58

6 Conclusion 60

A Appendix 62
A.1 Influence of Kernel Parameters on Sensitivity to Perturbations

of k-NN Graphs . 62
A.2 Weisfeiler-Lehman Runtime Improvements for Sparse Graphs 63
A.3 Distance Distribution of Descriptor Functions 63
A.4 MMD Baselines for Various Configurations 65

Bibliography 71

iv

List of Figures

2.1 Schematic of the backbone of a protein. 5
2.2 3D structure of uridine diphosphogalactofuranose-galactopyranose

mutase with a corresponding Ramachandran plot. 5
2.3 Sample images generated by StyleGAN-XL 9
2.4 Class-conditional samples from StyleGAN3 and StyleGAN-XL . 10
2.5 Three iterations of the Weisfeiler-Lehman algorithm. 17

3.1 Illustration of all point cloud perturbations applied to a protein. 23

4.1 Overall behaviour of MMD using graph-based descriptors. . . . 30
4.2 Influence of kernel parameters on MMD behaviour. 33
4.3 Violin plot of the distributions of the correlation coefficients of

various MMD configurations derived from the two different graph
construction methods. 34

4.4 Influence of ε on the sensitivity of MMD to perturbations. 36
4.5 Normalized MMD value at 20% of the maximum perturbation

amount for various MMD configurations at different ε values. . . 38
4.6 Normalized MMD values using the Weisfeiler-Lehman kernel

subject to various perturbations. 41
4.7 MMD vs. perturbations using the two novel protein descriptors. 44
4.8 MMD using ESM embeddings. 46
4.9 MMD using topological kernels. 48

5.1 Example 8-Å-graph vs Erdös-Rényi graph with the same number
of nodes and edges. 54

A.1 MMD vs. Gaussian Noise Perturbation (in %) for various graph
descriptors of the 2-NN-graphs. 62

A.2 Mean Euclidean distance between typical descriptor vectors used
in this thesis . 64

A.3 Clustering coefficient histogram MMD baselines for two different
ε values. 66

A.4 Degree distribution histogram MMD baselines for two different ε
values. 67

v

A.5 Laplacian spectrum histogram MMD baselines for two different
ε values. 68

A.6 ESM-based MMD baselines for two different ε values. 69
A.7 TDA-based MMD baselines for two different ε values. 70
A.8 Weisfeiler-Lehman-based MMD baselines for two different ε values. 70

List of Tables

3.1 Perturbation ranges used in this thesis. 24
3.2 Ranges of parameters used to extract graphs from point clouds

in this thesis. 25
3.3 Descriptor function bin numbers and ranges of descriptor func-

tions used in this thesis. 26

4.1 Average standard deviation of the various MMD configurations
shown in Figure 4.1 under the same perturbation types. 31

4.2 Inter-run standard deviation values averaged across the whole
pertubation range for all combinations of perturbation type, de-
scriptor functions, and ε values. 37

4.3 Standard deviations of the various Weisfeiler-Lehman configura-
tions under different perturbation regimes. Values higher than
0.1 are in bold. Rewiring edges results in the highest standard
deviations by far with σMMD > 0.28. Lower iterations of the algo-
rithm also results in higher standard deviations. 40

4.4 Standard deviation of the various protein-specific descriptors de-
vised in this thesis. 43

4.5 σMMD values for the MMD using the Evolutionary Scale Modeling
(ESM) learned embedding. 45

4.6 σMMD values for the MMD using the persitence Fisher kernel and
the multi scale kernel . 47

4.7 Runtime and computational complexity of the various elements
of the pipeline. 50

vi

List of Tables

vii

Chapter 1

Introduction

Generative modelling is a highly active branch of machine learning aiming
to capture the distribution of a certain feature set, be it images [Saharia et al.,
2022, Ramesh et al., 2022], text [Kojima et al., 2022], or graphs [Guo and
Zhao, 2020]. Modelling this distribution presents a lot of advantages, but
it is particularly consequential in biology [Lopez et al., 2020, Strokach and
Kim, 2022]. In protein science, the application of generative models can solve
the frequently occurring problem of generating novel proteins to perform a
specific industrial, experimental, or therapeutic function [Jendrusch et al.,
2021, Madani et al., 2020, 2021]. This process has so far been restricted to
experimental techniques such as directed evolution, which is costly both in
time and resources [Wang et al., 2021].

Generating novel samples has generally been most successful by using dif-
ferentiable architectures such as autoregressive models, the most successful
being transformers [Vaswani et al., 2017], and Generative Adversarial Net-
works (GANs) [Goodfellow et al., 2014]. While most of the efforts in this
field have been focusing on generating novel amino acid sequences anal-
ogous to natural sequences fulfilling desired properties [Riesselman et al.,
2018, Biswas et al., 2021, Weinstein and Marks, 2021, Repecka et al., 2021,
Kucera et al., 2022], there have been several attempts at taking structural
aspects of proteins into account, since structural features ultimately deter-
mine a protein’s function [Anand and Huang, 2018, Ingraham et al., 2019,
Maddhuri et al., 2021].

However, the design and improvement of generative models applied to pro-
teins is prohibited by the lack of suitable evaluation metrics. It is notoriously
hard to find expressive, robust and efficient performance measures that ac-
curately gauge the quality of generated samples in-silico [Theis et al., 2016,
Betzalel et al., 2022]. Efforts have been made to solve this challenge in the
image domain by using the fixed-length representations obtained from a
neural network such as the Inception v3 network, and subsequently calcu-
lating a Wasserstein distance between the set of generated samples and test
data using such representations [Heusel et al., 2017]. Recently, the commu-
nity has investigated this challenge specifically for a common representation

1

of proteins: graphs [Thompson et al., 2022, O’Bray et al., 2022]. In this do-
main, the standard measure used is a highly versatile statistic for a kernel
two-sample test called Maximum Mean Discrepancy (MMD) introduced by
Gretton et al. [2012]. MMD computes the distance between two sets of data
by computing a distance measure in a Reproducing Kernel Hilbert Space
(RKHS), so its versatily stems from the fact that any valid kernel and appro-
priate underlying data representation can be used. However, this framework
has yet to be applied to proteins, with practitioners mostly relying on either
sequence model evaluation metrics such as perplexity scores [Belinkov and
Glass, 2019, Ingraham et al., 2019, Hesslow et al., 2022], physics-based tools
to validate 3D structures such as RosettaRemodel [Huang et al., 2011, Anand
and Huang, 2018, Ingraham et al., 2019], which has sometimes limited ap-
plicability [Leman et al., 2020], or experimental validation [Strokach et al.,
2020]. While experimental validation is the ultimate metric, better metrics
for the fast in-silico assessment of generative proteins is required, and the
flexibility of MMD could be leveraged to fill this gap.

O’Bray et al. [2022] recently performed an in-depth evaluation of MMD,
and their results unveiled a number of pitfalls related to MMD. Depending
on the kernel and its associated parameters, different MMD configurations
ranked the quality of samples generated by different models differently. In
addition, when progressively perturbing a set of synthetic graphs, certain
MMD configurations with respect to another set of unperturbed graphs is-
sued from the same distribution was not always found to monotonically
increase with increasing amounts of perturbations, casting doubt on the ex-
pressivity of MMD in certain configurations and data.

In this thesis, we set out to quantify the quality of different MMD configu-
rations on protein data sets and perform a meta-evaluation of MMD-based
metrics. We investigate the values of various MMD configurations by apply-
ing perturbations to one set of proteins. These perturbations were actively
designed to be relevant for protein design use cases and include sequence
perturbations, graph perturbations and geometric perturbations. In this set-
ting, we investigate frequently used MMD configurations typically used to
evaluate generative models in the graph domain. In addition, we expand
this set of configurations by devising novel combinations of protein rep-
resentations, descriptors, and kernels, all relevant for different aspects of
protein design, and integrate them to the well-established MMD evaluation
framework.

2

This thesis is organized as follows: first, Chapter 2 introduces fundamental
concepts that we are going to build upon, and discusses the surrounding lit-
erature. Chapter 3 details the methodology of the experiments that we carry
out in this thesis, as well as describes all the configurations of MMD that we
will explore (i.e. all combinations of representations, descriptor functions,
kernels, and kernel parameters). Chapter 4 presents and contextualizes the
findings of those experiments. We summarize key findings, make recom-
mendations for practitioners and highlight some limitations and directions
for future work in Chapter 5 before concluding in Chapter 6.

3

Chapter 2

Background and Related Work

This chapter introduces fundamental concepts built upon in this thesis,
which lies at the interface between structural biology and machine learn-
ing. We start by defining some relevant biological properties of proteins,
as well as several representations leveraged in later chapters. We then intro-
duce generative models, applied to graphs and other domains. Crucially, we
discuss in detail the evaluation problem when it comes to generative mod-
els, as well as some of the unique challenges arising in the graph domain.
Furthermore, we discuss the current landscape of methods used to evaluate
graph generative models, such as the Maximum Mean Discrepancy (MMD).
Finally, we introduce kernels that can be used within the MMD computa-
tional framework.

2.1 Proteins

Proteins are large biomolecules that are formed from a sequence of amino
acids, performing their functions as determined by their three-dimensional
structure, which in turn is determined by their amino acid sequence. They
support a vast array of functions in living organisms, such as catalyzing
metabolic reactions, DNA replication, providing structural support to cells,
transporting molecules and sensing stimuli.

Each protein is made up of one or more chains of amino acids and contains
a backbone and different side chains. The atoms in the backbone include an
α-carbon, another carbon (the β-carbon), and a nitrogen atom. An overview
of the peptide backbone is shown in Figure 2.1. α-carbons also form the
anchor point of the side chain of each amino acid, which endows each amino
acid with various chemical properties related to acidity, polarity, electronic
charges, etc. These side chains together with their collective geometries
enable protein to interact with substrates, other proteins, or form structural
backbones for higher-order biomolecules [O’Connor and Adams, 2010].

α-carbons also play a role in the geometry of the protein backbone. Interest-
ingly, a plane is formed by two alpha carbons, the carboxyl group, and the
hydrogen atom attached to the nitrogen atom (see Figure 2.1), making the

4

2.1. Proteins

peptide bond between the nitrogen and carbon atom resistant to twisting.
That means that the rotations of these planes enabling the 3D folding of a
protein are governed by the angle of the bonds linking the nitrogen atom
to the α-carbon and the other carbon atom to the α-carbon, named φ and
ψ. These angles’ values are frequently used to validate proteins [Gore et al.,
2017], or characterize the secondary structure of proteins [Wood and Hirst,
2005].

Figure 2.1: Schematic of the backbone of a protein. Two α-carbons are shown as well as a
β-carbon in the middle. R1 and R2 represent the side chains of the amino acid. Image by
Marc T. Facciotti.

To visualize such angles, a Ramachandran plot can be constructed for any
protein [Ramachandran et al., 1963], where the x-axis represents the value
of the φ-angles and the y-axis represents the ψ-angles. Such a plot can reveal
secondary structural features such as β-sheets, α-helices, etc. An example of
a Ramachandran plot together with a 3D model of a protein can be found
in Figure 2.2.

Figure 2.2: 3D structure of uridine diphosphogalactofuranose-galactopyranose mutase with
a corresponding Ramachandran plot. The α-helices can be found on the middle left part
of the Ramachandran plot, the β sheets on the upper right quadrant, and the left handed
α-helices can be found in the middle upper right part of the plot. This figure is adapted from
Nayak et al. [2018].

5

https://bio.libretexts.org/Under_Construction/Purgatory/Core_%28Britt%27s_page%29/Proteins*%23

2.2. Graphs

2.2 Graphs

Proteins are often abstracted using graphs [Anand and Huang, 2018, Ingra-
ham et al., 2019]. A graph G is a pair of vertices V and edges E such that
G = (V, E), |V| = n and |E| = m. Two vertices i and j are adjacent if there is
an edge between them, i.e. eij ∈ E. The relationship between nodes can be
represented as an n × n adjacency matrix A, where:

Aij =

{
1, if eij ∈ E
0, otherwise.

(2.1)

In the case of a weighted graph, 1 is then substituted by a weight w in Equa-
tion 2.1.

The neighborhood of a node v is the set of nodes with an edge directly to
v, i.e. N(v) = {u ∈ V|euv ∈ E}. A graph is undirected if the edges do
not contain directional information, i.e. Aij = Aji. A directed graph would
result in directionality being encoded in edges, where Aij would not contain
any information about Aji. Nodes and edges in each graph can contain one
or more labels. In this thesis, we will mostly deal with labeled undirected
graphs, where each node will be labeled according to the amino acid type
that it belongs to.

There are multiple ways of constructing graphs from proteins. First, one
can extract a contact map of a protein by computing the (Euclidean) distance
between any two points belonging to each amino acid. The α-carbon is often
used for this purpose [Anand and Huang, 2018, Ingraham et al., 2019]. This
is a fully connected graph with weighted edges representing the distance
between each pair of nodes. From there, it is possible to either extract a
k-nearest neighbor (k-NN) graph, where k ∈ N > 0 defines the number of
nodes directly connected to any given node; or an ε-graph, where each node
within a given distance ε ∈ R+ \ {0} of another node is connected. Both
are graphs where each node is labeled with the residue name to which the
α-carbon belongs and the edges are unlabeled.

2.3 Topological Data Analysis

Although graphs are a powerful representation of proteins, the latter can
also be represented as point clouds. One powerful field of study of topolog-
ical properties of point clouds (among other structured data) is topological
data analysis.

Topology has witnessed relentless theoretical progress since Henri Poincaré
first addressed topological ideas as a distinct branch of mathematics in his
1895 publication of Analysis Situs [Poincaré, 1895]. Only recently – with

6

2.3. Topological Data Analysis

the advent of modern computing – has the field of computational topol-
ogy and Topological Data Analysis (TDA) gained momentum to investigate
(high-dimensional) data in physics, biology, and beyond [Dey et al., 1999,
Ghrist, 2008, Amézquita et al., 2020]. For material providing an extensive
and formal introduction to topology and persistent homology, please refer
to Freedman and Chen [2009], Edelsbrunner and Harer [2010], and Ghrist
[2008].

A powerful computational technique to analyze topological properties of
point clouds is persistent homology, which first requires us to define simplicial
homology. Simplicial homology refers to a way of assigning connectivity in-
formation to topological objects, such as point clouds, which are represented
by simplicial complexes. A simplicial complex K is a set of simplices that
correspond to vertices in dimension 0, edges in dimension 1, and triangles
in dimension 2. The subsets of a simplex σ ∈ K are referred to as its faces,
and each face τ ∈ K. Moreover, any non-empty intersection of two simplices
also needs to be part of the simplicial complex, i.e. σ ∩ σ′ ̸= ∅ for σ, σ′ ∈ K
implies σ ∩ σ′ ∈ K, meaning that K is closed under calculating the faces of a
simplex.

Persistent homology extends simplicial homology by employing filtrations
to imbue K with scale information. This process captures rich topological
information related to K in a principled way. The filtration process is gen-
erally defined by a function f : K → R satisfying some finite number of
values m and f 0 ≤ f 1 ≤ · · · ≤ f m−1 ≤ f m. This allows us to sort K using
f , for instance by extending f linearly to higher-dimensional simplices via
f (σ) := maxv∈σ f (v), leading to a nested sequence of simplicial complexes
like so:

∅ = K(0) ⊆ K(1) ⊆ · · · ⊆ K(m−1) ⊆ K(m), (2.2)

where K(i) := {σ ∈ K | f (σ) ≤ f (i)}. This relationship enables tracking
the appearance or birth (i.e. a connected component arising) and the dis-
sapearance or death (i.e. two connected components merging into one) of
topological features across scales as one transitions from K(i) to K(i+1). The
birth and death of topological features for different values of f are usually
summarized in a persistence diagram, which is a multiset of tuples, each of
which contains the values at which each feature is born or dies1.

A common construction for obtaining such features is the Vietoris-Rips
complex [Vietoris, 1927]. It requires a distance threshold ε and a metric
(.·, ·) (usually, the Euclidean distance, as we will use in this thesis). The
Vietoris-Rips complex at scale ε of an input protein point cloud is defined
as Vε(X) := {σ ⊆ X|(.x(i), x(j)) ≤ ε}, ∀x(i), x(j) ∈ σ, i.e. Vε contains all

1The name persistence diagram is derived from the observation that points far from the
diagonal line in the diagram are deemed persistent, because they span a high range of values
of the filtration function.

7

2.4. Generative Models

subsets of the input space whose pairwise distances are less than or equal
to ε. Vε is conceptually very similar to the ε-graphs discussed in section 2.2,
except that ε here ranges over the entire space of possible distance values,
and Vε also tracks topological features over all three dimensions, instead of
only connected nodes.

Note that the multiplicity of the persistence diagram corresponds to the
number of homology dimensions under study. In this thesis, given proteins
are represented as three-dimensional point clouds, we choose to track topo-
logical features across three homology dimensions: 0, 1 and 2. Effectively,
this tracks connected components in dimension 0, circular holes in dimen-
sion 1, and two dimensional voids or cavities in dimension 2 as the filtration
function is applied. For a more thorough introduction to homology and
homology groups, please refer to Edelsbrunner and Harer [2010].

2.4 Generative Models

While discriminative machine learning techniques aim to learn some depen-
dent variable Y from a set of (independent) features X , generative machine
learning models generate synthetic samples X ′ following the distribution
of X . Computing such probabilistic distributions through maximum likeli-
hood estimation and related methods is intractable in many cases [Rayner
and MacGillivray, 2002, Drovandi and Pettitt, 2011] and real-world scenarios
[Yıldırım et al., 2015]; as such, new learning paradigms were established to
enable the modeling of complex, real-world distributions through gradient-
based methods [Bond-Taylor et al., 2021].

The earliest generative models were based on Hidden Markov Models (HMMs),
where one estimates the hidden parameters of the distributions emitting the
observed samples [Baum and Sell, 1968, Baum et al., 1970]. However, this
process assumes a Markov process, whereby earlier elements of a sequence
of observes do not influence the current state being estimated, which is par-
ticularly prohibitive in real world contexts. As such, more powerful models
were required.

One seminal method transforming the field of generative modeling was that
of generative adversarial learning, which was pioneered by Goodfellow et al.
[2014], where a (deep) generator is pitted against a (deep) discriminator.
The former’s goal is to generate samples identical to the training distribu-
tion, while the latter is to classify whether the sample originated from the
generator or the training distribution. Simultaneously developed methods
by Kingma and Welling [2013] introduced a similar framework rooted in
probability theory and introduced Variational Auto-Encoders (VAEs), where
instead of a discriminator, the second network leverages the representation
of the generator to perform approximate inference. In both cases, the two

8

2.4. Generative Models

Figure 2.3: Sample images generated by StyleGAN-XL, the state-of-the-art GAN by Sauer
et al. [2022] at the time of writing.

networks (i.e. the generator and the discriminator/inference network) are
jointly trained using backpropagation to minimize some appropriate loss
function. Autoregressive models such as the transformer architecture in-
troduced by Vaswani et al. [2017] leverages masking to perform next-token
predictions, and has also seen success in domains such as graphs since [You
et al., 2018]. A recent review of the existing landscape of generative model-
ing methods has been provided by Bond-Taylor et al. [2021].

Differentiable generative modeling techniques have been particularly suc-
cessful in the image domain [Sauer et al., 2022, Ramesh et al., 2022, Saharia
et al., 2022], a testament to the fact that modern Generative Adversarial Net-
works (GANs) have been able to tackle multiple practical challenges such as
mode collapse2 and convergence failure3 to produce realistic images, such
as the sample seen in Figure 2.3. More pertinent to this thesis is the ap-
plication of generative models to graphs. The application domain has been
reviewed by Zhou et al. [2020]. In short, graph generative networks are ca-
pable of operating on the highly versatile and extensive graph domain. It
has been shown that they can produce small molecules as well as gener-
ate social networks, and knowledge graphs, among many other real-world
tasks. Generative networks can be grouped into two categories: those that
generate nodes in each graph sequentially, such as GraphRNN by You et al.
[2018], and those that generate graphs from some latent distribution directly
using GANs, such as MolGAN by De Cao and Kipf [2018], or using VAEs
[Grover et al., 2019].

Operating in the graph domain incurs some unique challenges. From a mod-
eling standpoint, dealing with graphs means dealing with a much larger
and variable output space. In the general case, at least n2 values need to be
specified. Additionally, the number of edges and nodes varies from sam-

2We define mode collapse as the situation when a particular type of generated output
(i.e. intra-mode outputs) lacks variety (see also Section 5.3.3)

3This refers to when a model cannot reach an even remotely optimal set of parameters
to reduce a particular loss function.

9

2.5. The Evaluation Problem

Figure 2.4: Class-conditional samples generated by StyleGAN3 (left) and StyleGAN-XL
(right) trained on the same dataset at the same resolution. This figure is adapted from Sauer
et al. [2022]. The pathologies seen here are diverse, but we can see that it seems that the
model on the left does not seem to be powerful enough to situate various animal body parts
with respect to one another; a similar phenomenon can be seen in objects where symmetries
and higher order structure seems to be difficult to model.

ple to sample, which also needs to be accounted for in the model structure.
Furthermore, by building a generative model generating graphs of up to
n nodes, n! possible and equivalent adjacency matrices can be generated.
Such a high representation complexity is challenging to model, difficult and
expensive for objective functions to optimize, and difficult to evaluate. The
last modeling-related issue when dealing with graphs is that the presence
of one edge is not independent of another, i.e. real-world graphs often ex-
hibit patterns of local connectedness which need to be accounted for in the
model.

2.5 The Evaluation Problem

Perhaps the most significant problem plaguing all generative models is the
evaluation problem, which consists in evaluating the quality of generated
samples from a model with respect to a test set. While sidestepping the
problem is possible in the image domain by manually inspecting generated
samples, a practice that might reveal interesting modelling pathologies (see
Figure 2.4), this cannot be done at scale, nor can it be done for generative
models operating in the graph domain, where human perception cannot
easily evaluate the quality of a set of generated graphs. The community
has therefore devised a set of measures to attempt to rank models more
adequately.

Before going through existing metrics, it is useful to state broad goals, or
desiderata of metrics concerning generative modelling. As highlighted by
O’Bray et al. [2022], (pseudo)-metrics must be endowed with the following
properties:

1. Expressivity: Given two sets of samples X1 and X2, a suitable mea-

10

2.5. The Evaluation Problem

sure d should have d(X1,X2) increasing monotonically as X1 and X2
become more and more dissimilar.

2. Robustness: d(X1,X2) should be robust to small perturbations in ei-
ther sets.

3. Efficiency: d(X1,X2) should be fast to calculate should scale well with
size and number of graphs.

For images, an interesting metric (and the current standard for that domain)
is the Fréchet Inception Score, as introduced by Heusel et al. [2017]. Overall,
the goal of this metric is to calculate some distance between the real-world
images and the synthetic images using the activations of a neural network
normally used for classification tasks. Concretely, this is achieved by calcu-
lating the squared Wasserstein metric between the generated and real rep-
resentations computed from a convolutional network (commonly, the Incep-
tion v3 architecture from Szegedy et al. [2016] is used) as two multidimen-
sional Gaussian distributions with parameters N (µ, Σ) and N (µrw, Σrw), re-
spectively. The general formulation of the pth Wasserstein distance between
two distributions u and v is given by

Wp(u, v) :=
(

inf
γ∈Γ(u,v)

∫
M×M

d(x, y)p dγ(x, y)
)1/p

, (2.3)

where (M, d) is a metric space, Γ(u, v) denotes the collection of all mea-
sures on M × M with marginals u and v on the first and second factors,
respectively. Intuitively, Wp(u, v) can be interpreted as a generalization of
the Minkowski distance between probability distributions instead of fixed-
length vectors, the latter being given by:

d (X, Y) =

(
n

∑
i=1

|xi − yi|p
) 1

p

. (2.4)

In the case of the Fréchet Inception Score, the squared Wasserstein distance
between the Inception v3-derived representations of the images can be re-
formulated as follows:

FID = ||µ − µrw||22 + tr(Σ + Σrw − 2(Σ1/2ΣrwΣ1/2)1/2). (2.5)

For the graph domain, such a measure is infeasible, due to the lack of a
common consensus on embedding Xu [2021]. Interesting strides have been
made in some domains, such as in the drug discovery field, where the penul-
timate layer of the ChemNet neural network can be used as input to the FID
as shown by Preuer et al. [2018].

11

2.6. Maximum Mean Discrepancy

However, an interesting approach recently explored by Thompson et al.
[2022] leverages the observation, made in part by Xu et al. [2018a], Morris
et al. [2019], and Kipf and Welling [2016], that certain Graph Neural Net-
works (GNNs) have the ability to extract meaningful representations with-
out any training. Through a set of two perturbation experiments, similar
to the work done by Xu et al. [2018b] and O’Bray et al. [2022], Thomp-
son et al. [2022] show that using randomly initialized Graph Isormorphism
Networks (GINs), first introduced by Xu et al. [2018a], provides a strong,
domain-agnostic metric to evaluate generative GNNs. GINs – like the ma-
jority of GNNs – consist of (i) L propagation layers that perform some form
of message passing between the nodes aiming to convey information within
a region of a graph, computing rich representations of each node’s neigh-
bourhoods in the process, and (ii) some readout layer, aiming to compute
some embedding and subsequent output. For GINs, the message passing
layers computing each (hidden) node embedding v at layer l (denoted h(l)

v)
is assigned the following value:

h(l)
v := MLP(l)

(
h(l−1)

v + f (l)
({

h(l−1)
v : u ∈ N(v)

}))
, (2.6)

∀v ∈ V where V is as defined in section 2.2, ∀ l > 0, h(l)
v ∈ Rd, MLP(l)

is a multilayer perceptron, and f (l) is some aggregating function, such as
the mean, max or sum. The second part, i.e. the graph readout layer with
skip connections, aggregates features from all nodes at each layer l ∈ [1, L],
concatenating them into one (Ld) dimensional vector xi as follows:

xi = CONCAT
(

g
({

h(l)
v | v ∈ V

})
| l ∈ [1, L]

)
(2.7)

where g can be chosen from the same set of functions as f (l).

While these developments are encouraging, practitioners designing genera-
tive GNNs such as Liao et al. [2019], Niu et al. [2020], and You et al. [2018]
have generally gravitated towards the MMD measure to evaluate the qual-
ity of the graph, most likely due to the fact that it provides a solid statisti-
cal framework that can yield solid statistically significant evidence that two
sample distributions are issued from the same distribution.

2.6 Maximum Mean Discrepancy

A significant part of this thesis is centered around investigating the MMD
statistic, so we define and examine existing MMD research here. Introduced
by Borgwardt et al. [2006] and further exposited by Gretton et al. [2012], it
leverages the expressive power and versatility of kernel functions to evaluate
a distance function between two sample distributions. Moreover, Gretton

12

2.6. Maximum Mean Discrepancy

et al. [2012] describe how this distance function can be treated as a statistic,
from which various tests can be derived to evaluate whether or not two
distributions are equivalent. MMD is therefore an ideal platform to leverage
when trying to assess generative models.

Let us now reformulate the problem described above more formally fol-
lowing the notation from Gretton et al. [2012]. Let x and y be random
variables defined on a topological space X with respective Borel proba-
bility measures p and q. Given observations X = {x1, . . . , xn} ⊆ X and
Y = {y1, . . . , ym} ⊆ X i.i.d. sampled from p and q, respectively, can we
decide whether p ̸= q?

Gretton et al. [2012] observe in Lemma 1 that:

p = q ⇐⇒ Ex(f (x)) = Ey(f (y)) ∀ f ∈ C(X) (2.8)

where C(X) is the space of bounded continuous functions on X . Critically,
Gretton et al. [2012] observe that even though C(X) is able to identify p = q
uniquely, such a function class is not practical to work with. They therefore
define a more general class of statistic F to measure the disparity between
q and p to be f : X → R, f ∈ F . From there, they defined the MMD as:

MMD[F , p, q] := sup
f∈F

(Ex(f (x))− Ey(f (y))). (2.9)

Given n samples from X and m samples from Y, the biased empirical esti-
mate of the MMD is given by:

MMDb[F , X, Y] := sup
f∈F

(
1
m

m

∑
i=1

f (xi)−
1
n

n

∑
i=1

f (yi)

)
(2.10)

Gretton et al. [2012] go on to prove in Section 2.2 that kernel functions be used
as one of the possible function classes F . Let a kernel function k : X ×X →
R satisfying the following properties:

• k(xi, xj) = k(xj, xi) ∀ xi, xj ∈ X

• ∑i,j ci, cjk(xi, xj) ≥ 0 ∀ xi, xj ∈ X , ∀ ci, cj ∈ R.

At last, we then arrive at the biased empirical estimate of MMD using kernel
functions, which is given by:

MMD2(X, Y) :=
1

m2

m

∑
i,j=1

k(xi, xj) +
1
n2

n

∑
i,j=1

k(yi, yj)−
2

mn

m

∑
i=1

n

∑
j=1

k(xi, yj)

(2.11)

13

2.6. Maximum Mean Discrepancy

In accordance with Lemma 6 of Gretton et al. [2012], the diagonal elements
of the first two kernel matrices in Equation 2.11 can be removed to obtain an
unbiased estimate of MMD, which we will use throughout this thesis, and
can be formulated as follows:

MMD2(X, Y) :=
1

m(m − 1)

m

∑
i,j=1

k(xi, xj) +
1

n(n − 1)

n

∑
i,j=1

k(yi, yj)

− 2
mn

m

∑
i=1

n

∑
j=1

k(xi, yj) (2.12)

While one of the advantages of kernels is that they are able to operate di-
rectly on a variety of structured data (see Section 2.7 for further details), it
can be convenient to extract intermediate representations of the data using
descriptor functions g : X → Rd prior to being used in a kernel. Descriptor
functions, which we will investigate in more detail below, can be designed
in such a way that they can distill relevant properties of the structured data
under study, potentially saving on computation costs. Similarly, the ker-
nel choice and parameters also heavily impacts how each dataset is being
analyzed. Importantly, one consequence of the free choice of descriptor
functions and kernel functions is that MMD does not inherently have a scale
[O’Bray et al., 2022]

In the graph domain, it is incumbent upon the practitioner to (i) choose an
appropriate (optional) graph descriptor and (ii) kernel with (iii) appropriate
kernel hyperparameters. This process, along with its pitfalls and current
practices are discussed in more detail by O’Bray et al. [2022], but we want to
give an overview of possible, common, and sensible choices for descriptor,
kernel, and hyperparameter here.

A common practice in the literature is to first extract some fixed-length
graph representation using a range of commonly used descriptors such as:

• The degree histogram. Given a graph G = (E, V) as defined in Section
2.2, we can calculate deg(v), ∀v ∈ V, where position i of the resulting
histogram is the number of vertices with degree i. With a given max-
imum degree d, we obtain a mapping f : G 7→ Rd. We will normalize
the entries of the histogram to obtain a density histogram (i.e. all the
entries add up to one), which then becomes a size-invariant descriptor.

• The clustering coefficient histogram. The clustering coefficient of a
vertex v is defined as the fraction of edges within its neighborhood
divided by all possible edges between neighbors, i.e.

C(v) :=
2
∣∣{(vi, vj) ∈ E | vi ∈ N(v) ∨ vj ∈ N(v)

}∣∣
deg(v)(deg(v)− 1)

. (2.13)

14

2.7. Kernels

C(v) ∈ [0, 1] measures the extent to which each vertex v forms a clique
[Watts and Strogatz, 1998]. The collection of coefficients can be cap-
tured for each graph in a histogram, which is also normalized.

• The Laplacian spectrum histogram. The normalized graph Laplacian
is given by L := I − D− 1

2 AD− 1
2 where A is the adjacency matrix (see

Section 2.2), I the identity matrix and D the degree matrix, where
Dii = deg(vi) and Dij = 0, i ̸= j. Since A is symmetric (all graphs
in this thesis are undirected), and that L is real-valued, it is also di-
agnonalizable, with eigenvalues λ1 ≤ λ2 ≤ . . . ∀λ ∈ [0, 2] – see Chung
[1997], 1997, Chapter 1, Lemma 1.7 for a proof of the boundedness.
This lends itself again to some bounded, normalized histogram rep-
resentation. As discussed by O’Bray et al. [2022], it is unknown if
graphs can be fully determined by their spectrum, and we know that
for certain classes of graphs this is not the case [Schwenk, 1973].

It is worth nothing that none of those three descriptors take node labels
into account. This is why we are going to investigate alternative kernels
leveraging node labels (see Section 2.7), as well as use fixed-length vectors
derived from powerful transformer-based protein language models, specifi-
cally from the Evolutionary Scale Modeling (ESM) family [Rives et al., 2021].
This family of models allows us to obtain an embedding vector h ∈ Rd for
each residue, which we can then average to obtain one protein-level em-
bedding by taking the average across residues. Because transformers don’t
constitute an essential part of this thesis, we redirect the reader to the origi-
nal publication describing it by Vaswani et al. [2017], as well as the excellent
explainer by Alammar [2018] for a discussion on the foundations of the
topic.

2.7 Kernels

Kernels are a class of functions computing the similarity between structured
data in any Reproducing Kernel Hilbert Space (RKHS). Once graph repre-
sentations are computed, it is possible to compute a kernel between any two
such vectorized representations using kernels. In this thesis, we will use:

• The linear kernel. Let x, y ⊆ X ∈ Rd, where d denotes the dimension-
ality of the graph descriptor (e.g. the number of bins in the clustering
histogram). Then, the linear kernel is defined as:

k(x, y) = xTy + c (2.14)

with c ∈ R.

15

2.7. Kernels

• The Gaussian kernel, which is given by:

k(x, y) = exp
(
−∥x − y∥2

2σ2

)
(2.15)

We will neglect certain kernels used in the literature, either because they
are not positive semi-definite, such as the total variation kernel (see O’Bray
et al. [2022], Appendix A1 for a proof), or because they capture little more
information compared to existing accepted alternatives, or because they are
inefficient to compute and therefore not recommended to evaluate gener-
ative models, e.g. the Earth mover’s distance-based kernel [O’Bray et al.,
2022].

We will, however, leverage other classes of kernels that are applicable to
models evaluating protein generative model performance but were previ-
ously unused in the literature. The first are graph kernels (reviewed by
Borgwardt et al. [2020]). In particular, we will examine an efficient and ex-
pressive kernel used for biological data: the Weisfeiler-Lehman kernel. The
second class of kernels leveraged here operate directly on the persistence
diagrams obtained using the filtration procedures described in section 2.3.
Specifically, we will use the persistence Fisher kernel (PFK) introduced by Le
and Yamada [2018] and the multi-scale kernel (MSK) introduced by [Rein-
inghaus et al., 2015]. We define both in the next paragraphs.

The Weisfeiler-Lehman algorithm Originally designed as a graph isomor-
phism test by Weisfeiler and Lehman [1968], the eponymous algorithm pro-
vides a powerful and computationally efficient way of capturing local node
neighborhood information to quantify the degree of similarity between any
two graphs, which works for both labeled and unlabeled graphs. The pro-
cedure can be described as follows:

1. If the nodes of the graph do not already have node label assigned to
them, assign them one, e.g. using their degree.

2. For each node, fetch the node label of each neighbouring node and sort
the labels including the node’s own label in ascending order. Concate-
nate the resulting node labels into a string.

3. For each node, compress the string representation of the node label
using a hash function, i.e. only returning the same hash if the inputs
are the same.

4. For each node, assign the result of the hash function to the label of the
node.

This process can be repeated multiple times to integrate information for
farther neighbourhoods. In this thesis, the amino acid type will be used as

16

2.7. Kernels

(a) First iteration of the Weisfeiler-Lehman al-
gorithm.

(b) Second iteration of the Weisfeiler-Lehman
algorithm.

(c) Third iteration of the Weisfeiler-Lehman algorithm.

Figure 2.5: Three iterations of the Weisfeiler-Lehman node relabelling algorithm. The de-
tailed explanation of each step of the algorithm are provided in the main text. The kernel
between the two graphs can be computed by computing kWL(G, G′) = ϕ2(G) · ϕ2(G′). Im-
agery adapted from Mengin [2019].

a node label. An example of a Weisfeiler-Lehman procedure can be seen in
Figure 2.5. A kernel can be computed between two graphs by computing
the dot product of two resulting hash histograms obtained at the end of the
Weisfeiler-Lehman algorithm [Shervashidze et al., 2011].

Persistence Fisher kernel Kernels between persistence diagrams also offer
powerful similarity measures between the global shape of proteins using the
persistence diagrams produced by the Vietoris-Rips filtration, thereby going
beyond just looking at the neighborhoods of each node in the case of the
Weisfeiler-Lehman procedure described above.

We first look at the Persistence Fisher kernel, introduced by Le and Yamada
[2018]. Given two diagrams Dgi and Dgj, the Persistence Fisher kernel kPF

is given by:
kPF(Dgi, Dgj) := exp

(
−tdFIM(Dgi, Dgj)

)
(2.16)

where:
dFIM(Dgi, Dgj) := dP

(
ρ(Dgi∪Dgj∆)

, ρ(Dgj∪Dgj∆)

)
, (2.17)

and

17

2.8. Summary

dP (ρi, ρj) = arccos
(∫√

ρi(x)ρj(x)dx
)

. (2.18)

is defined as the Fisher Information Metric, with ρi and ρj being two persis-
tence diagrams which can be represented as points in a probability simplex
P :=

{
ρ|
∫

ρ(x)x. = 1, ρ(x) ≥ 0
}

. We can consider persistence diagrams as
points by setting:

ρDg :=

[
1
Z ∑

u∈Dg
N (x; u, σI)

]
x∈Θ

(2.19)

where Z =
∫

Θ ∑u∈Dg N (x; u, σI)dx, N is a Gaussian distribution, I the iden-
tity matrix, and σ > 0 is the smoothing parameter is chosen by the practi-
tioner. Note that if the set Θ is set to the Euclidean space, as will be the
case in this thesis, each persistence diagram then turns to a probability dis-
tribution, which is what allows us to compute the Fisher information metric
[Anirudh et al., 2016, Adams et al., 2017].

Multi-scale kernel .

In this thesis, we will also use the MSK introduced by Reininghaus et al.
[2015]. Using the same notation as above, they define the MSK kMS as:

kMS(Dgi, Dgj) =
1

8πσ ∑
p∈Dgi
q∈Dgj

e−
∥p−q∥2

8σ − e−
∥p−q̄∥2

8σ (2.20)

where σ is specified by the user and q̄ is a point on the persistence diagram
mirrored at the diagonal, i.e. if q = (b, d), then q̄ = (d, b) where b is the birth
of the topological feature d is its corresponding death.

2.8 Summary

In this section, we introduced the fundamental characteristics of proteins
by first discussing how amino acids form a backbone and each of them
forms two dihedral angles with adjacent amino acids to make up the three-
dimensional structure of the protein. We then showed how one can rep-
resent proteins using graphs, either by using k-nn graphs or ε-graphs. We
explored an alternative representation strategy using topological data analy-
sis and discussed how it allows one to capture the global structural features
of the protein.

We then moved on to introduce generative models, and discussed recent
advances in such models in the image domain, where such models were
first developed. We then proceeded to discuss generative models in the

18

2.8. Summary

graph domain, along with the unique computational challenges that it in-
curs from a modeling standpoint. Importantly, we outlined the evaluation
problem arising when evaluating generative networks, specifically in the
graph domain, and highlighted the desiderata for good metrics: expressiv-
ity, robustness, and efficiency. We examined currently accepted practices
and introduced MMD, the main method used in this thesis. We finally in-
troduced the collection of kernels that we are going to leverage when using
the MMD.

19

Chapter 3

Methods

The primary methodology employed in this thesis to assess the quality
of metrics used to evaluate generative protein models is heavily inspired
by O’Bray et al. [2022], and consists in evaluating how well a particular
combination of representation, optional descriptor function, kernel and pa-
rameters applied to all three aforementioned elements1 correlates with the
amount of perturbation applied to one set of proteins. This can be broken
down in the following steps:

1. Take two i.i.d. samples from a database of proteins.

2. Progressively perturb to one of the samples.

3. Measure the MMD between the unperturbed and perturbed sample.

4. Once the varying degrees of perturbations have been applied and ac-
companying MMDs catalogued, compute the correlation coefficient
between the MMD and the amount of perturbation.

A particular MMD configuration is considered superior to another if the
resulting correlation coefficients of the former are higher than that of the
latter.

In this chapter, we start by motivating the datasets that will be used to
simulate a generative protein model. We then describe and motivate the
experimental setups – i.e. perturbations – that we will employ to test the
various configurations of MMD. Finally, we enumerate and justify which
configurations of MMD are tested, including all the combinations of protein
representations, descriptor functions, and kernels. Finally, we describe and
motivate the experimental setups – i.e. perturbations – that we will employ
to test the various metric configurations.

1We also subsequently refer to the parametrization and choice of all these options as an
MMD configuration.

20

3.1. Datasets

3.1 Datasets

In this thesis, except otherwise stated, all results will be derived from 10
random samples from the homo sapiens monomeric proteome downloaded
from the EBI AlphaFold2 database [Varadi et al., 2022, Tunyasuvunakool
et al., 2021], a repository comprising predicted 3D structures of protein se-
quences obtained from AlphaFold2, the current state-of-the-art method to
predict protein structure from sequences [Jumper et al., 2021]. Multiple
reasons justify this choice. First, despite being a proxy for experimentally
validated proteins, AlphaFold2 is known to provide predicted 3D structures
for naturally occurring proteins with the same accuracy as experimentally
acquired 3D structures [Jumper et al., 2021], ensuring that the conclusions
we reach in this thesis will be broadly applicable to experimentally acquired
protein structures. Second, this allows us to establish the ground truth of
a range of MMD configurations, hence also enabling the gauging the qual-
ity of Third, there are practical advantages related to this database because
it contains consistently formatted pdb files exclusively cataloguing heavy
atoms directly contributing to the 3D structure of a single monomer, which
simplifies downstream processing.

3.2 Perturbations

While O’Bray et al. [2022] focused on graph perturbations specifically, we
wanted to augment and refine the set of perturbations applied to the per-
turbed sample of proteins to be more pertinent to proteins. Three categories
of perturbations can be distinguished:

Graph Perturbations These perturbations mostly overlap with those de-
fined by O’Bray et al. [2022], as they include (i) adding edges to a graph
(ii) removing edges from a graph, and (iii) rewiring, i.e. swapping, edges
within a graph.

Point Cloud Perturbations These perturbations aim to add changes to the
underlying coordinates of each atom in the protein. Such perturbations
include injecting Gaussian noise (Equation 3.1), (ii) twisting, (iii) shearing,
and (iv) tapering. Importantly, where appropriate, we extract the graphs
after applying the point cloud perturbation, to ensure the changes in the
point cloud can be reflected in the graph structure. We proceed to detail
each of the equations governing the perturbations below. An illustration of
each of those perturbations can be found in Figure 3.1

In the notation that follows, x, y z represent the unperturbed coordinates,
and x′, y′, and z′ represent the perturbed coordinates. The Gaussian noise

21

3.2. Perturbations

added to a coordinate system is given by:x′

y′

z′

 =

x + Noise
y + Noise
z + Noise

 (3.1)

where Noise ∼ N (0, σ) and σ is set by the user. Twisting is achieved by
adding the following transformation to the coordinate system:

x′

y′

z′

 =

x · cos(α · z)− y · sin(α · z)
x · sin(α · z) + y · sin(α · z)

z

 (3.2)

where α ∈ R is in rad · Å−1 is set by the user. Shearing the coordinate system
is achieved by applying

x′

y′

z′

 =

a · z + x
b · z + y

z

 (3.3)

to the coordinate system, where a, b ∈ R are in Å and set by the user. In this
thesis, we set a = b. Similarly, tapering is achieved by applying

x′

y′

z′

 =

(0.5 · a2 · z + b · z + 1) · x
(0.5 · a2 · z + b · z + 1) · y

z

 (3.4)

where a, b ∈ R are in Å and set by the user. Similarly to Equation 3.3, we
set a = b in this thesis.

Mutation These simply consist in (i) selecting the positions that will be
mutated by sampling from a Bernoulli distribution with parameter p and
(ii) for selected positions, swap the amino acid by any of the 20 possible
naturally-occurring amino acids. While graph perturbation probabilities
(e.g. of adding an edge) range from 0 to 1, here we mostly concentrate on
lower regimes of mutation, i.e. between 0 and 0.1, so see how sensitive var-
ious MMD configurations are to a few point mutations, which covers most
of the real-world protein engineering use cases [Poluri and Gulati, 2017].

For each perturbation, a range of degrees of perturbation is defined and 20
different evenly-spaced degrees of perturbation are examined and repeated
10 times with 10 pairs of i.i.d. proteins to estimate the sensitivity of the
particular MMD configuration to the perturbation. The ranges used for each
parameter used in this thesis are shown in Table 3.1

22

3.2. Perturbations

X

-100
-50

0
50

100

Y

-60
-40

-20
0

20
40

60

Z

-150
-100
-50

0
50
100
150

Unperturbed

X

-100
-50

0
50

100

Y

-60
-40

-20
0

20
40

60

Z

-150
-100
-50

0
50
100
150

Gaussian Noise (σ= 3.16 ◦
A)

X

-100
-50

0
50

100

Y

-60
-40

-20
0

20
40

60

Z

-150
-100
-50

0
50
100
150

Twist (α= 0.01 rad · ◦A−1)

X

-100
-50

0
50

100

Y

-60
-40

-20
0

20
40

60

Z

-150
-100
-50

0
50
100
150

Taper (a= b= 0.01

X

-100
-50

0
50

100

Y

-60
-40

-20
0

20
40

60

Z

-150
-100
-50

0
50
100
150

Shear (x= y= 0.53)

Figure 3.1: Illustration of all point cloud perturbations applied to a protein. The amount of
each perturbation shown here corresponds to 10% of the maximum value of the maximum
value of each perturbation as shown in Table 3.1. The protein displayed here is the cilia- and
flagella-associated protein 53 (UniProt code Q96M91). Each α carbon is colored according to
its position on the chain. On the unperturbed protein, the lighter colors are located closer to
the viewer.

23

3.3. MMD Configurations

Perturbation Range

Twist [0, 0.1] (rad/Å)
Shear [0, 5] (Å)
Taper [0, 0.1] (Å, Å)
Gaussian Noise [0, 30] (Å)
Mutation [0, 0.1]
Graph Perturbations
(remove, add, rewire edges)

[0, 1]

Table 3.1: Perturbation ranges used in this thesis. Each interval was split into 20 evenly-
spaced degrees of perturbation.

3.3 MMD Configurations

We introduced MMD in Section 2.6 (Equation 2.11 and 2.12), and noted
that an important aspect of using MMD in practice consists in choosing the
right descriptor function and kernel, because it heavily impacts which as-
pects of the data are distilled for analysis in MMD and also heavily impacts
how the data is processed by the kernel functions inside of MMD. Here,
we list and motivate all graph extraction techniques, descriptor functions
employed, and kernels adopted in this experiment.

First, throughout our experiments, we will use the unbiased squared MMD
estimate, which removes self-comparison terms in the kernel matrices (Gret-
ton et al. [2012], Lemma 6), which can result in negative values. We will
normalize the resulting MMD over the whole range of perturbation for each
curve as well to compare behaviors of different MMD configurations not
operating on the same scale. As highlighted in Section 2.6, MMD does not
have an inherent sense of scale anyway, so this normalization step does not
impact our analysis negatively.

MMDNormalized =
MMD − min(MMDExperiment)

max(MMDExperiment)− min(MMDExperiment)
(3.5)

Where MMDExperiment is the collection of MMD values for a particular ex-
periment, i.e. a particular MMD configuration tracked through the whole
range of a particular perturbation.

3.3.1 Representations

We will use several different representations of proteins in this thesis, which
can be grouped into three categories. The first is coordinates. These are
parsed from each .pdb file. The second is graphs. They include k-NN and

24

3.3. MMD Configurations

Graph type Values

k-NN graphs k ∈ {2, 6, 8}
ε-graphs ε ∈ {8, 16, 32}

Table 3.2: Ranges of parameters used to extract graphs from point clouds in this thesis.

ε-graphs, introduced in Section 2.2. A summary table of the different types
of graphs extracted from proteins in this thesis can be found in Table 3.2.
The third is the simple protein sequence. Each protein’s sequence parsed
from each .pdb file as is. Since we are only dealing with monomers, no
additional processing is required.

3.3.2 Descriptor Functions

As discussed in Section 2.6, some kernels require some alternative vector-
ized representation to work. We will use the following protein descriptor
functions here.

Graph descriptors They are defined in Section 2.6 and include the degree
distribution histogram, the clustering coefficient histogram and the Lapla-
cian spectrum histogram. These are all fixed-length vectors. The maxi-
mum value of the degree histogram was determined based on the longest
sequence length of the proteins in the dataset (2699), because the node de-
gree of any given graph will be at most equal to the size of the largest graph
in the dataset. This aspect is particularly relevant when considering the
perturbation adding edges to a protein graph.

Coordinates descriptors In order to capture the information of the 3D
structure of the protein beyond local neighborhood information, a topo-
logical descriptor of each protein in the form of a persistence diagram is
extracted using a Vietoris-Rips filtration introduced in detail in Section 2.3.
To speed up computation (and since we do not take amino acid type into
account for this analysis), we sampled every other point to dramatically re-
duce the running time and memory footprint without significantly affecting
the shape of the protein.

Protein-specific descriptors In this thesis we introduce two novel protein-
specific descriptor functions resulting in fixed-length vector representations
for subsequent use in kernels accepting inputs in Rd. The first consists of
a histogram of the pairwise distance of each α-carbon2; the second consists

2In principle, an all-atom histogram could also be computed; we just anticipate that
the added value of such an all-atom histogram would be minimal in comparison to the
significantly increase computation cost and memory footprint of the resulting histogram.

25

3.3. MMD Configurations

Descriptor Name Number of Bins Range of Bins

Degree Histogram 2699 [0, 2699]
Laplacian Spectrum Histogram 100 [0, 2]
Distance Histogram 1000 [0, 1000] (Å)
Dihedral Angles Histogram 100 [−π, +π] (rad)

Table 3.3: Descriptor function bin numbers and ranges of descriptor functions used in this
thesis. The ranges are given by [minimum value, maximum value] and (unit) when applica-
ble.

in concatenating the two histograms of the two dihedral angles ϕ and ψ
formed by each amino acid discussed in Section 2.1. The inspiration behind
those two descriptors comes from elements of the validation pipeline of
novel Protein Data Bank structures [Read et al., 2011, Gore et al., 2012, 2017],
where atoms too close together are flagged and unusual dihedral angles
are reported to penalize the overall validity of the protein 3D model to be
validated. Those unusual dihedral angles are also called “Ramachandran
outliers”, after the scientist who discovered a way to display the ϕ and ψ
in a 2-D histogram, and recovered features in this histogram related to the
secondary structure of the protein from such plots. [Ramachandran et al.,
1963]. Overall, both the biological relevance and the established scientific
success of distance histograms and dihedral angles histogram in both the
validation and analysis of proteins lend credence to those newly established
descriptors.

Sequence descriptors In Section 2.6, we discussed the Evolutionary Scale
Modelling family to construct descriptors of a fixed length using a learned
embedding. We use the 6-layer variant trained on the UniRef50 snapshot
from March 2018 which contains approximately 43 million parameters, be-
cause it is able to process the full range of sequence lengths that we have in
our dataset (the longest sequence fragment is 2699 amino acids long).

Table 3.3 summarizes the parameters used to set up the descriptor functions
in this thesis.

3.3.3 Kernels

Once a suitable representation and descriptor function is selected, one re-
quires a kernel to evaluate the MMD in the corresponding RKHS. We detail
which kernels we are going to evaluate and why in this section. Kernels
used in this thesis can be grouped into three separate categories.

The first category has been discussed in the literature extensively since it
was used to evaluate generative graph neural network models, i.e. the fixed-
length vector kernels like the Gaussian (RBF) kernel and the linear kernel, both

26

3.4. Experimental Setup

of which are defined in Section 2.73. Since the only condition for each vector
to be valid inputs for those kernels is that they are in Rd, the protein-specific
vector representations outlined in Section 3.3.2 are valid inputs.

As alluded to in Section 2.7, we introduce two new classes of kernels for use
in MMD which so far have not been used to evaluate generative models due
to the unique aspects of proteins that need to be captured. This brings us
to the second category of kernels used in this thesis: graph kernels. Specifi-
cally, we are going to use the Weisfeiler-Lehman kernel discussed in Section
2.7 because it captures local patterns in the neighbourhood of each node.
In Appendix A.2, we detail how we achieved an 80% improvement in the
runtime of the Weisfeiler-Lehman kernel by leveraging the sparsity of the
graphs used in this thesis.

To estimate global changes in the shape of the protein, we will also use ker-
nels accepting persistence diagrams as input, specifically, we will adopt the
PFK [Le and Yamada, 2018] and the MSK [Reininghaus et al., 2015] defined
in Section 2.7.

3.4 Experimental Setup

3.4.1 Measuring the Quality of MMD Configurations

To objectively evaluate the various representation, descriptor, and kernel
combinations used in MMD, we will use two correlation coefficients, namely
the Spearman’s correlation coefficient and Pearson’s correlation coefficient,
each given by:

ρs(X, Y) =
cov(RANK(X), RANK(Y))

σRANK(X)σRANK(Y)
, (3.6)

and

ρp(X, Y) =
cov(X, Y)

σXσY
, (3.7)

respectively. Here, X is the vector containing the set of values used to per-
turb one of the protein sets and Y the vector of MMD values between the
unperturbed and perturbed set for each perturbation level. In this setting, a
high Spearman correlation coefficient (Equation 3.6) is crucial to satisfy the
first criterium of a performance metric: expressivity (see Section 2.5). This
will guarantee that the metric increases monotonically with the amount of
perturbation. As O’Bray et al. [2022] have shown, some configurations of
MMD on synthetic datasets revealed that an increasing MMD value with
increasing perturbation is not guaranteed. While Thompson et al. [2022]

3We will follow the speed-up trick outlined in Appendix A.5 by O’Bray et al. [2022] to
reduce the computation time of each different bandwidth parameter.

27

3.5. Summary

highlighted that linearity is not a requirement, the Pearson correlation co-
efficient (Equation 3.7) will allow us to further refine the selection of the
metrics behaving most predictably, and distill the most relevant configura-
tions for a given perturbation range.

Another important metric we can employ to quantify the quality of a par-
ticular MMD configuration is the standard deviation of the various MMD
values across runs over the whole range of pertubations. As indicated in Sec-
tion 2.5, one of the desiderata for a generative model metric is robustness.
Since all experiments have been run with the same number of i.i.d. samples
every time, using the standard deviation allows us to estimate how much
a particular MMD configuration is sensitive to the underlying data used.
An MMD configuration with a high standard deviation under a particu-
lar perturbation regime would be indicative of low robustness, and would
therefore be a less reliable estimate of the quality of the samples compared
to an MMD configuration with a high standard deviation. We abbreviate
this standard deviation measure as σMMD to avoid confusion with the σ pa-
rameter of the RBF kernel presented in Section 3.3.3. In Chapter 4, wherever
we conduct statistical tests, and our highest significance threshold is 5 · 10−2.

3.4.2 Software Library Design

Due to the complexity and modularity of the methodology explored above,
it is required to have a scalable library to execute all the evaluation exper-
iments at scale and efficiently. To accomplish this task, we developed a
custom Python library leveraging parallel processing of data to the greatest
extent possible. We were inspired by the standards of scikit-learn and
implemented multiple modules following the same design patterns to en-
sure that we could build Pipeline objects with the necessary steps required
to compute an MMD. All the code used for this thesis can be found here:
https://github.com/pjhartout/msc_thesis. Access can be granted upon
request.

3.5 Summary

In this chapter, we detailed the methodological setup employed in this the-
sis. We first described the datasets we used, as well as the type of per-
turbations applied to them. We then discussed the representations of the
proteins used in this study, as well as described the descriptor functions
used for those representations. Crucially, we motivated our choice for the
collection of kernels used for estimating the MMD. Finally, we outlined the
methodology leveraged to assess the quality of various MMD configurations
objectively.

28

https://github.com/pjhartout/msc_thesis

Chapter 4

Results

In this chapter, we will introduce the results of the experiments subjecting
protein representations to various relevant perturbation regimes highlighted
in chapter 3. We first discuss the results and implications of frequently used
MMD configurations, namely by showing how it behaves on protein graph
descriptors. We then move on to show the results of the sensitivity of the
MMD values depending on the underlying graph representation used to
extract the various graphs. Finally, we explore more exotic configurations of
MMD that we hypothesize might be more suitable for proteins. We conclude
this chapter with a short section on the runtimes of the various elements of
the computational pipelines shown in this chapter.

4.1 Overall MMD Behavior

4.1.1 General observations on the correlation coefficients

Surprisingly, we found that the behavior of MMD was not as inconsistent
for the types of graphs extracted from proteins as was found on synthetic
graphs by O’Bray et al. [2022]. Figure 4.1 show trajectories and correlations
of MMD values with different perturbation types using ε-graphs with ε set to
8 Å. Both the Spearman and Pearson correlation coefficients averaged across
runs are high. There is, however, an exception: the correlation between
the MMD obtained from the degree histogram and the addition of edges
is comparatively low with ρP = 0.25 and ρS = −0.44 versus that obtained
from the Laplacian spectrum histogram (with ρP = 0.95, ρS = 0.98), and
the clustering histogram (with ρP = 0.95, ρS = 0.97). Curiously, the next
lowest (Pearson) correlation coefficient from Figure 4.1 is also associated to
the degree distribution histogram under the rewiring perturbation regime
(ρp = 0.82 ρS = 0.98).

4.1.2 General observations on the standard deviations

In parallel, Table 4.1 also supports the fact that the standard deviation of
the normalized MMD of the degree distribution descriptor is the highest,

29

4.1. Overall MMD Behavior

suggesting that this is not a very robust descriptor. Since modelling graph
connectivity is one of the primary challenges of generative graph models [Li
et al., 2018], based on these results we do not recommend using a degree
histogram as a descriptor function for MMD. The remaining descriptors do
show high correlations (ρP ≥ 0.89, ρS ≥ 0.97) and reasonably low standard
deviations (> 0.64), which make them good candidates.

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Clustering
ρP = 0.95
ρS = 0.97

Degree
ρP = 0.25
ρS = -0.44

Laplacian
ρP = 0.95
ρS = 0.98

Add Edges

Clustering
ρP = 0.97
ρS = 1.0

Degree
ρP = 0.99
ρS = 1.0

Laplacian
ρP = 0.97
ρS = 1.0

Gaussian Noise

Clustering
ρP = 0.99
ρS = 1.0

Degree
ρP = 0.92
ρS = 1.0

Laplacian
ρP = 0.97
ρS = 1.0

Remove Edges

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Clustering
ρP = 0.91
ρS = 0.98

Degree
ρP = 0.82
ρS = 0.98

Laplacian
ρP = 0.89
ρS = 1.0

Rewire Edges

0 25 50 75 100
Perturbation (%)

Clustering
ρP = 0.98
ρS = 1.0

Degree
ρP = 0.99
ρS = 1.0

Laplacian
ρP = 1.0
ρS = 1.0

Shear

0 25 50 75 100
Perturbation (%)

Clustering
ρP = 0.99
ρS = 1.0

Degree
ρP = 0.98
ρS = 1.0

Laplacian
ρP = 0.99
ρS = 1.0

Taper

0 25 50 75 100
Perturbation (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Clustering
ρP = 0.96
ρS = 1.0

Degree
ρP = 0.96
ρS = 1.0

Laplacian
ρP = 1.0
ρS = 1.0

Twist

Descriptor
Clustering Histogram
Degree Histogram
Laplacian Spectrum Histogram

Figure 4.1: MMD vs. perturbation (in % of the maximum values shown in Table 3.1) for var-
ious graph descriptors of the 8Å-graphs under different perturbations regimes. The kernel
used to obtain these graphs is the RBF kernel with bandwidth 0.01. ρS: average Spearman
correlation coefficient across runs. ρP: average Pearson correlation coefficient across runs.
Except for the degree histogram behaviour when edges are added, we see that most MMD
configurations behave well, i.e. there is a high correlation betweeen the MMD values and the
perturbation.

30

4.1. Overall MMD Behavior

Perturbation Type Descriptor σMMD

Add Edges Clustering Histogram 0.023
Degree Histogram 0.024943
Laplacian Spectrum Histogram 0.039

Gaussian Noise Clustering Histogram 0.011
Degree Histogram 0.012793
Laplacian Spectrum Histogram 0.027

Remove Edges Clustering Histogram 0.009
Degree Histogram 0.004400
Laplacian Spectrum Histogram 0.018

Rewire Edges Clustering Histogram 0.029
Degree Histogram 0.104
Laplacian Spectrum Histogram 0.032

Shear Clustering Histogram 0.031
Degree Histogram 0.041
Laplacian Spectrum Histogram 0.0410

Taper Clustering Histogram 0.026
Degree Histogram 0.035
Laplacian Spectrum Histogram 0.043

Twist Clustering Histogram 0.053
Degree Histogram 0.081
Laplacian Spectrum Histogram 0.064

Table 4.1: Average standard deviation of the various MMD configurations shown in Figure
4.1 under the same perturbation types. The highest standard deviation is observed for the
degree histogram descriptor under rewiring perturbations.

31

4.2. Influence of the Graph Representation on MMD

4.1.3 Influence of the choice of kernel

We next investigate the overall influence of the kernel on the correlations
between perturbations and MMD shown in Figure 4.2. We can see that for
σ ⪅ 0.1 (σ being the hyperparameter of the Gaussian kernel, see Section 2.7)
and for the linear kernel, MMD values behave as desired, i.e. ρP, ρS ≥ 0.8
and, if one excludes the Laplacian spectrum histogram at σ = 0.1, we have
ρP, ρS > 0.95. However, correlation coefficients drop sharply when increas-
ing σ > 0.1, most likely due to oversmoothing, which is a phenomenon
arising when the bandwidth of the kernel is large enough to obscure any
structure in the data [Hwang et al., 1994]. This can have unpredictable con-
sequences on resulting MMD values: in the case of the degree histogram or
the clustering histogram, this results in an overly sensitive kernel sharply
increasing in value at the slightest perturbation, while the clustering his-
togram remains oblivious to large amounts of perturbation. This can be
explained by the relative scale of each of the embeddings and their pairwise
distances, which we catalogue in Appendix A.3.

4.2 Influence of the Graph Representation on MMD

4.2.1 Comparing Graph Construction Technique

To compare which graph construction technique was overall most adviseable,
we computed the correlation coefficients of the various available combina-
tions of graph type, graph extraction parameter, and description function
with an RBF kernel with σ = 0.01, which was shown to behave reasonably
stably across descriptors (Figure 4.2). We then compared the distributions of
the two correlation coefficients and computed a Mann-Whitney U test [Fay
and Proschan, 2010]. Figure 4.3 shows the distributions of both ρS and ρP for
the k-NN and ε-graphs. Both the test for the Pearson correlation coefficient
and the Spearman correlation coefficient were significant (p = 8.35 · 10−4

and p = 1.765 · 10−2, respectively) indicating that one distribution is stochas-
tically greater than the other. In both cases, the distribution of the correlation
coefficients from the ε-graphs is higher, as we can see in the legend of Figure
4.3. This result is intuitive, because ε-graphs are likely more sensitive to the
underlying topology of the protein. We therefore proceed with ε-graphs in
the subsequent results discussed below.

4.2.2 Lower Values of ε Are More Stable

In the previous paragraph, we established that ε-graphs were more appro-
priate to compute the MMD. Now, we investigate which specific thresh-
old(s) ε are most appropriate using the same meta-metrics as before. Figure
4.4 shows the normalized MMD values with the varying degree of different

32

4.2. Influence of the Graph Representation on MMD

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Clustering
ρP = 0.98
ρS = 1.0

Degree
ρP = 0.99
ρS = 1.0

Laplacian
ρP = 1.0
ρS = 1.0

RBF Kernel σ = 0.0001

Clustering
ρP = 0.98
ρS = 1.0

Degree
ρP = 0.99
ρS = 1.0

Laplacian
ρP = 1.0
ρS = 1.0

RBF Kernel σ = 0.001

Clustering
ρP = 0.97
ρS = 1.0

Degree
ρP = 0.99
ρS = 1.0

Laplacian
ρP = 0.97
ρS = 1.0

RBF Kernel σ = 0.01

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Clustering
ρP = 0.95
ρS = 1.0

Degree
ρP = 0.99
ρS = 1.0

Laplacian
ρP = 0.8
ρS = 0.97

RBF Kernel σ = 0.1

Clustering
ρP = 0.85
ρS = 1.0

Degree
ρP = 0.98
ρS = 1.0

Laplacian
ρP = 0.6
ρS = 0.94

RBF Kernel σ = 1

Clustering
ρP = 0.71
ρS = 0.93

Degree
ρP = 0.92
ρS = 0.99

Laplacian
ρP = 0.38
ρS = 0.38

RBF Kernel σ = 100

0 25 50 75 100
Perturbation (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Clustering
ρP = 0.71
ρS = 0.91

Degree
ρP = 0.42
ρS = 0.94

Laplacian
ρP = 0.38
ρS = 0.38

RBF Kernel σ = 1000

0 25 50 75 100
Perturbation (%)

Clustering
ρP = 0.71
ρS = 0.91

Degree
ρP = 0.37
ρS = 0.5

Laplacian
ρP = 0.38
ρS = 0.38

RBF Kernel σ = 10000

0 25 50 75 100
Perturbation (%)

Clustering
ρP = 0.99
ρS = 1.0

Degree
ρP = 1.0
ρS = 1.0

Laplacian
ρP = 0.99
ρS = 1.0

Linear Kernel

ε-value (in Å)
Clustering Histogram Degree Histogram Laplacian Spectrum Histogram

Figure 4.2: MMD vs. Gaussian noise perturbation (in % of the maximum values shown in
Table 3.1) for various graph descriptors of the 8Å-graphs. ρS: average Spearman correlation
coefficient across runs. ρP: average Pearson correlation coefficient across runs. The kernel
here is shown on top of each subplots. We can see that reasonable behaviour of the RBF
kernel can be seen when σ < 1. The linear kernel also behaves well.

33

4.2. Influence of the Graph Representation on MMD

ε-graphs k-NN graphs
Graph Type

-0.75

-0.50

-0.25

0.00

0.25

0.50

0.75

1.00

1.25
Co

rre
lat

io
n

Co
eff

ici
en

t

*

Correlation Type
ρS µk = 0.879, µε = 0.959

ρP µk = 0.877, µε = 0.914

Figure 4.3: Violin plot of the distributions of the correlation coefficients of various MMD
configurations derived from the two different graph construction methods. Each distribu-
tion contains various combinations of descriptor functions, perturbation types, and various
values of the parameter used to extract the graphs (i.e. k in the case of k-NN graphs and ε
in the case of ε-graphs). The distributions are then compared using a Mann-Whitney U test,
yielding significant p-values for both ρS and ρP (p = 8.35 · 10−4 and p = 1.765 · 10−2, respec-
tively), indicating that the correlation coefficients obtained from k-NN graphs are statisitcally
significantly worse than those obtained from ε-graphs.

types of perturbations with various graph descriptors. While most config-
urations exhibit high correlations: excluding seven outliers of the 72 coeffi-
cients calculated, we have ρP > 0.97 and ρS > 0.98. In Figure 4.4, we can
also see that lower coefficients tend to be reached when using a high thresh-
old ε. For instance, in the case of the twisting perturbation and using the
clustering histogram as a graph descriptor, we see ρP = 0.73 and ρS = 0.71
for 32 Å-graphs vs ρP = 0.96 and ρS = 1.0 for both 16 and 8 Å graphs. While
this is the most extreme example, we also see a similar pattern when using
a different descriptor, such as the Laplacian spectrum histogram, where we
have ρP = ρS = 0.93 for 32Å graphs vs ρP = 0.99ρS = 1.0 for 16Å graphs
and ρP = 1.0ρS = 1.0 for 8-Å graphs. While there are some exceptions to
this pattern, the differences are not nearly as substantial (the highest differ-
ence where the correlation coefficient for the 32-Å graph is higher than the
other two ε thresholds is 0.03, see lower mid pane of Figure 4.4).

The finding that increasing ε decreases the overall quality of MMD is fur-
ther supported by the changes in standard deviation of the different runs
averaged across the applied perturbation range, which is summarized in

34

4.2. Influence of the Graph Representation on MMD

Table 4.2. In this table, we can see that higher values of ε almost con-
sistently incur a higher standard deviation, i.e. we almost always have
σMMD,32Å > σMMD,16Å > σMMD,8Å. The degree histogram descriptor under
shearing and tapering perturbations seems to be the two exceptions out of
12 cases. Interestingly, the standard deviations were highest when subject-
ing proteins to the twisting perturbation, most likely due to the fact that the
spheres used to construct the graphs most likely increasingly overlap when
some degree of twist is applied. In short, the conclusion of the last two
paragraphs is that the sparser the graph representation by lowering ε, the
more stable the resulting MMD.

4.2.3 Lower ε Values for Graph Contruction Are More Sensitive to
Lower Perturbation Regimes

While we noted that choosing a lower ε value to extract the graph would
likely improve the stability of resulting MMDs, there is also another con-
sideration when choosing a graph representation. As shown in Figure 4.4,
when 20% of the maximum amount of perturbation applied1, in seven out
of 12 cases, the normalized MMD of 8Å graphs is higher than that of the
16- or 32 Å graphs. In addition, we find that, generally, in lower perturba-
tion regimes, higher percentages of the normalized MMD are reached with
graphs constructed with a lower ε. Figure 4.5 illustrates this phenomenon.
By grouping each configuration of MMD under different perturbation types
at the 20% mark of the maximum perturbation applied, we see that the
8Å- and 16Å graphs are significantly higher than that of the 32Å graphs
(Mann-Whitney U test: p = 1.08 · 10−4 and p = 5.56 · 10−3, respectively). In
short, in addition to being overall more stable, lower ε values and sparser
subsequent graphs also tend to be better at detecting smaller changes in
protein topologies than larger ε values and denser graphs. This is useful for
a practitioner in advanced stages of modeling, where small changes in the
generated graph population need to be detected.

1See Table 3.1 for the respective maxima.

35

4.2. Influence of the Graph Representation on MMD

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

8-Å
ρP = 0.97
ρS = 1.0

16-Å
ρP = 1.0
ρS = 1.0

32-Å
ρP = 0.98
ρS = 1.0

Gaussian Noise
 Clustering Histogram

8-Å
ρP = 0.99
ρS = 1.0

16-Å
ρP = 0.99
ρS = 1.0

32-Å
ρP = 0.95
ρS = 1.0

Gaussian Noise
 Degree Histogram

8-Å
ρP = 0.97
ρS = 1.0

16-Å
ρP = 0.99
ρS = 1.0

32-Å
ρP = 0.99
ρS = 1.0

Gaussian Noise
 Laplacian Spectrum Histogram

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

8-Å
ρP = 0.99
ρS = 1.0

16-Å
ρP = 0.98
ρS = 1.0

32-Å
ρP = 0.96
ρS = 0.98

Taper
 Clustering Histogram

8-Å
ρP = 0.98
ρS = 1.0

16-Å
ρP = 1.0
ρS = 1.0

32-Å
ρP = 0.98
ρS = 1.0

Taper
 Degree Histogram

8-Å
ρP = 0.99
ρS = 1.0

16-Å
ρP = 0.92
ρS = 1.0

32-Å
ρP = 0.91
ρS = 0.93

Taper
 Laplacian Spectrum Histogram

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

8-Å
ρP = 0.98
ρS = 1.0

16-Å
ρP = 0.97
ρS = 0.99

32-Å
ρP = 0.98
ρS = 1.0

Shear
 Clustering Histogram

8-Å
ρP = 0.99
ρS = 1.0

16-Å
ρP = 1.0
ρS = 1.0

32-Å
ρP = 0.98
ρS = 1.0

Shear
 Degree Histogram

8-Å
ρP = 1.0
ρS = 1.0

16-Å
ρP = 0.98
ρS = 1.0

32-Å
ρP = 0.96
ρS = 1.0

Shear
 Laplacian Spectrum Histogram

0 20 40 60 80 100
Perturbation (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

8-Å
ρP = 0.96
ρS = 1.0

16-Å
ρP = 0.96
ρS = 1.0

32-Å
ρP = 0.73
ρS = 0.71

Twist
 Clustering Histogram

0 20 40 60 80 100
Perturbation (%)

8-Å
ρP = 0.96
ρS = 1.0

16-Å
ρP = 0.96
ρS = 1.0

32-Å
ρP = 0.99
ρS = 1.0

Twist
 Degree Histogram

0 20 40 60 80 100
Perturbation (%)

8-Å
ρP = 1.0
ρS = 1.0

16-Å
ρP = 0.99
ρS = 1.0

32-Å
ρP = 0.93
ρS = 0.93

Twist
 Laplacian Spectrum Histogram

ε-value (in Å)
8 16 32

Figure 4.4: MMD vs. point cloud perturbation for various descriptors. In general, when
graphs are extracted with a lower ε value, the MMD curve increases more rapidly. The only
exception to this trend is the Laplacian spectrum histogram descriptor under the tapering
perturbation.

36

4.2. Influence of the Graph Representation on MMD

Perturbation Type Descriptor Function ε σMMD

Gaussian Noise Clustering Histogram 8 0.011
16 0.015
32 0.043

Degree Histogram 8 0.013
16 0.017
32 0.024

Laplacian Spectrum Histogram 8 0.027
16 0.030
32 0.034

Shear Clustering Histogram 8 0.031
16 0.049
32 0.055

Degree Histogram 8 0.041
16 0.038
32 0.030

Laplacian Spectrum Histogram 8 0.041
16 0.048
32 0.050

Taper Clustering Histogram 8 0.026
16 0.031
32 0.088

Degree Histogram 8 0.035
16 0.049
32 0.044

Laplacian Spectrum Histogram 8 0.043
16 0.053
32 0.089

Twist Clustering Histogram 8 0.053
16 0.082
32 0.179

Degree Histogram 8 0.081
16 0.103
32 0.104

Laplacian Spectrum Histogram 8 0.064
16 0.145
32 0.229

Table 4.2: Inter-run standard deviation values averaged across the whole pertubation range
for all combinations of perturbation type, descriptor functions, and ε values. Values higher
than 0.08 are in bold. Twisting perturbations show particularly high average standard devi-
ations > 0.05, and higher ε values also shows the highest standard deviation values > 0.1
for the twisting perturbations. In almost all cases, we have σ

MMD,32−Å
> σ

MMD,16−Å
>

σ
MMD,8−Å

. The degree histogram descriptor under shearing and tapering perturbations
seems to be the exceptions.

37

4.2. Influence of the Graph Representation on MMD

8 16 32
ε-value (in Å)

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

N
or

m
ali

ze
d

M
M

D
at

20
%

 P
er

tu
rb

ati
on

Figure 4.5: Normalized MMD value at 20% of the maximum perturbation amount (as shown
in Table 3.1) for various MMD configurations at different ε values. The difference between
the 8Å- and 32Å graphs is significant (Mann-Whitney U -test p = 1.08 · 10−4). The difference
between the 16Å- and 32Å graphs is also significant (p = 5.56 · 10−3). However, the difference
between the 8Å- and 16Å graphs was not signicant (p = 3.47 · 10−1, 5 · 10−2 is our highest
significance threshold.)

38

4.3. Graph Kernels

4.3 Graph Kernels

The results of the perturbation experiments using the Weisfeiler-Lehman
kernel (see Sections 2.7 and 3.3.3) in MMD can be seen in Figure 4.6. Two
important takeaways can be be derived from this figure.

4.3.1 Quality of MMD Using Weisfeiler-Lehman

The first conclusion is derived from the observation of the meta metrics. We
can see that, correlations are relatively low for graph perturbations (Figure
4.6, top row). If we take the kernel using 5 iterations for instance, we get
ρP = 0.4 and ρS = 0.44 when adding edges. Additionally, from the shape
of the curve, we can also derive that the Weisfeiler-Lehman kernel is not
sensitive to changes in the number of edges unless an extreme amount is
added. Removing edges also results in a similar curve, but correlation co-
efficients are higher, with ρP = 0.68 and ρS = 1.0 (ρP is still considerably
lower than other configurations of MMD examined thus far, see earlier Sec-
tions 4.1 and 4.2 for details). The next perturbation (rewiring edges), high-
lights the need for the standard deviation estimation of different samples
(see Table 4.3), because although the correlation coefficients are reasonable
(ρP = 0.71, ρS = 0.99), one could realistically not distinguish highly rewired
protein graphs from another, because σMMD is extremely high compared to
other configurations or other types of perturbations (for the rewiring, all
σMMD > 0.28 while the other σMMD < 0.15). This reflects the high confidence
internal we see in the upper right pane of Figure 4.6. For point cloud per-
turbations, correlation coefficients are in line with the coefficients we have
seen before (ρP > 0.94 and we consistently have ρS = 1), there seems to be a
crucial caveat in the curves that we see in Figure 4.6 which we discuss next.

4.3.2 Insensitivty in Low Perturbation Regimes

Figure 4.6 indeed reveals a systematic pathology when using the Weisfeiler-
Lehman kernel in MMD. When applying a low amount of perturbation,
there does not seem to be a proportional rise in the (normalized) MMD
value. As an example, the normalized MMD only rises substantially from
the observed value on the unperturbed set after adding 10% of Gaussian
noise to the data (which corresponds to 3.16Å, see Figure 3.1 for an illus-
tration of what 10% of Gaussian noise looks like for a given protein). This
‘inverted elbow’ shape of the curve seen in almost all perturbation types
except for the rewiring regime, where the very high σMMD seems to obscure
any meaningful pattern as discussed in the previous paragraph. This phe-
nomenon is particularly pronounced in the other two graph perturbation
scenarios, where 80%-95% of the perturbation needs to be added to ob-
serve any meaningful change in MMD. This has dramatic implications for

39

4.3. Graph Kernels

Perturbation Type Iterations σMMD

Add Edges Iterations: 1 0.018
Iterations: 5 0.007
Iterations: 10 0.006

Gaussian Noise Iterations: 1 0.016
Iterations: 5 0.014
Iterations: 10 0.013

Mutation Iterations: 1 0.147
Iterations: 5 0.072
Iterations: 10 0.061

Remove Edges Iterations: 1 0.004
Iterations: 5 0.003
Iterations: 10 0.004

Rewire Edges Iterations: 1 0.296
Iterations: 5 0.290
Iterations: 10 0.287

Shear Iterations: 1 0.079
Iterations: 5 0.046
Iterations: 10 0.043

Taper Iterations: 1 0.037
Iterations: 5 0.030
Iterations: 10 0.029

Twist Iterations: 1 0.147
Iterations: 5 0.072
Iterations: 10 0.061

Table 4.3: Standard deviations of the various Weisfeiler-Lehman configurations under differ-
ent perturbation regimes. Values higher than 0.1 are in bold. Rewiring edges results in the
highest standard deviations by far with σMMD > 0.28. Lower iterations of the algorithm also
results in higher standard deviations.

practitioners, as this means that one cannot distinguish between a generated
sample of graphs and a real one unless the generated sample exhibits highly
pathological features, which is undesirable for evaluation purposes. While
the reason for these findings are not entirely clear, it is possible that the di-
versity of the hashes obtained during the Weisfeiler-Lehman algorithm is so
high that substantial changes need to occur prior to observing any shifts in
the dot product of the resulting hash histograms. Further analyses on the
diversity of hashes and their relative population needs to be done to validate
this hypothesis. Another way to remedy this pathology would be to not use
the amino acid as node labels. While this would entail loosing sensitivity to
mutations, the diversity of hashes might be substantially reduced so as to
ensure that the resulting dot products will be more sensitive to changes in
hash populations.

40

4.4. Protein-Specific Descriptors Are Inexpensive, High-Quality Descriptor
Functions

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Iters: 1
ρP = 0.39
ρS = 0.41

Iters: 5
ρP = 0.4
ρS = 0.44

Iters: 0
ρP = 0.41
ρS = 0.36

Add Edges
Iters: 1
ρP = 0.62
ρS = 1.0

Iters: 5
ρP = 0.68
ρS = 1.0

Iters: 0
ρP = 0.71
ρS = 1.0

Remove Edges
Iters: 1
ρP = 0.86
ρS = 0.99

Iters: 5
ρP = 0.71
ρS = 0.99

Iters: 0
ρP = 0.62
ρS = 0.99

Rewire Edges

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Iters: 1
ρP = 0.99
ρS = 1.0

Iters: 5
ρP = 1.0
ρS = 1.0

Iters: 0
ρP = 0.99
ρS = 1.0

Gaussian Noise
Iters: 1
ρP = 0.94
ρS = 1.0

Iters: 5
ρP = 0.94
ρS = 1.0

Iters: 0
ρP = 0.94
ρS = 1.0

Mutation

0 20 40 60 80 100
Perturbation (%)

Iters: 1
ρP = 0.96
ρS = 1.0

Iters: 5
ρP = 0.96
ρS = 1.0

Iters: 0
ρP = 0.96
ρS = 1.0

Shear

0 20 40 60 80 100
Perturbation (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Iters: 1
ρP = 0.93
ρS = 1.0

Iters: 5
ρP = 0.94
ρS = 1.0

Iters: 0
ρP = 0.95
ρS = 1.0

Taper

0 20 40 60 80 100
Perturbation (%)

Iters: 1
ρP = 0.94
ρS = 1.0

Iters: 5
ρP = 0.94
ρS = 1.0

Iters: 0
ρP = 0.94
ρS = 1.0

Twist

Kernel Settings
Iterations: 1
Iterations: 5
Iterations: 10

Figure 4.6: MMD vs. perturbations using the Weisfeiler-Lehman kernel using the 8Å-graphs
as inputs. We see that high levels of perturbations are required to raise the normalized MMD
values. We also see that MMDs computed with the Weisfeiler-Lehman kernel are insensitive
to the rewiring of edges, and results in MMDs with a high inter-run variance.

4.4 Protein-Specific Descriptors Are Inexpensive, High-
Quality Descriptor Functions

Figure 4.7 shows the normalized MMD as various types of perturbations are
added to one set of proteins, where each row has a corresponding pertur-
bation type. Each column also corresponds to a different kernel and kernel
parameter configuration.

4.4.1 Dihedral Angles Histograms

We start our examination of the novel, protein-specific descriptors outlined
in Section 3.3.2 by discussing the dihedral angles histograms of the φ and

41

4.4. Protein-Specific Descriptors Are Inexpensive, High-Quality Descriptor
Functions

ψ bond angles. We see that for this descriptor, the kernel choice heavily in-
fluences the correlation coefficients; indeed, if one chooses the linear kernel
or the RBF kernel with a low bandwidth (10−5) or the parameter-free linear
kernel, we obtain high correlation coefficients (ρP > 0.95 and ρS = 1) if we
exclude the Gaussian noise perturbation, which we discuss below. Indeed,
correlation coefficients are low for this descriptor when subject to Gaussian
noise (0.41 > ρP > 0.39 and 0.59 > ρS > 0.5). While their associated stan-
dard deviation is not particularly high (see Table 4.4), this would indicate
that they would not be useful for use in MMD.

However, when examining the profile of the perturbation curve (Figure 4.7,
top row), we can see that with very low Gaussian noise levels (as low as 5%,
which in this thesis corresponds to 1.5Å, see Table 3.1), the MMD already
reaches its highest point. This phenomenon entails that the dihedral angles
histogram is not necessarily an inappropriate descriptor, but a very sensitive
one. This can be useful to practitioners; indeed, when predicting the 3D
structure of proteins from the amino acid sequence for instance, Jumper
et al. [2021] had to apply an additional refinement algorithm leveraging
Amber force fields [Hornak et al., 2006] to ensure that the bond geometries
were not violated (see [Jumper et al., 2021] p. 586 for a detailed discussion).
Such a descriptor used in MMD can therefore provide statistical evidence
to support the statement that (generated) bond geometries follow a natural
distribution.

One conclusion additional conclusion from the analysis of this particular
protein descriptor is that although both Pearson and Spearman correlation
coefficients as well as σMMD provide powerful quantitative tools to gauge the
quality of a metric, i.e. meta-metrics, one should still carefully consider the
profile of individual perturbation experiments as well as reason through the
expressive power of a particular descriptor or kernel to accurately assess the
practicality of a particular MMD configurations.

4.4.2 α-Carbon Distance Histogram

The distance histogram also serves as a good protein descriptor, and does
not exhibit some of the sensitivity-related pathologies that we discussed in
Section. 4.4.1. If we set aside the twisting perturbation, which we discuss
below, we get high correlation coefficients (ρP > 0.97 and ρS > 0.99 irre-
spective of the kernel or perturbation type chosen). Standard deviations are
also reasonably low, since we consistently have σMMD < 0.1 not considering
twisting.

The α-carbon distance histogram descriptor as used in MMD does not seem
to behave well under twisting perturbations, with both low correlations and
high standard deviations. While the RBF kernel configurations seem to have
a high correlation (ρP, ρS ≥ 0.95), using the linear kernel yields correlation

42

4.4. Protein-Specific Descriptors Are Inexpensive, High-Quality Descriptor
Functions

Perturbation Type Kernel Descriptor σMMD

Gaussian noise Linear Kernel Dihedral Angles Histogram 0.062
Distance Histogram 0.071

RBF Kernel (σ = 1) Dihedral Angles Histogram 0.048
Distance Histogram 0.059

RBF Kernel (σ = 1 · 10−5) Dihedral Angles Histogram 0.042
Distance Histogram 0.060

Shear Linear Kernel Dihedral Angles Histogram 0.037
Distance Histogram 0.066

RBF Kernel (σ = 1) Dihedral Angles Histogram 0.035
Distance Histogram 0.050

RBF Kernel (σ = 1 · 10−5) Dihedral Angles Histogram 0.028
Distance Histogram 0.051

Taper Linear Kernel Dihedral Angles Histogram 0.059
Distance Histogram 0.079

RBF Kernel (σ = 1) Dihedral Angles Histogram 0.040
Distance Histogram 0.062

RBF Kernel (σ = 1 · 10−5) Dihedral Angles Histogram 0.049
Distance Histogram 0.063

Twist Linear Kernel Dihedral Angles Histogram 0.060
Distance Histogram 0.250

RBF Kernel (σ = 1) Dihedral Angles Histogram 0.039
Distance Histogram 0.228

RBF Kernel (σ = 1 · 10−5) Dihedral Angles Histogram 0.050
Distance Histogram 0.230

Table 4.4: Standard deviation of the various protein-specific descriptors devised in this the-
sis. σMMD > 0.2 are in bold. This table reflects two observations made from Figure 4.7: first,
that overall standard deviation of the MMD values across the perturbation range is quite
low. Second, the distance histogram seem to result in particularly high standard deviations
when subject to twisting perturbations.

coefficients as low as ρP = 0.35 and ρP = 0.37. Additionally, the standard
deviation for the MMD curves obtained using the α-carbon distance his-
togram descriptor are high across kernel choices (σMMD > 0.22), which does
not make it a very robust descriptor.

While less sensitive than the dihedral angles descriptor, the α-carbon dis-
tance histogram descriptor still provides several advantages over the dihe-
dral angles histogram. Although we have not tested this here, this descriptor
can certainly be used to accurately gauge the size in 3D space of the proteins
generated. This can be useful when crafting generative models that generate
proteins conditioned on overall size in 3D space. Additionally, as reflected
through the different perturbations shown in Figure 4.7, this descriptor is
mostly able to detect changes in the interatomic space. This can also allow a
practitioner to detect atom clashes and overall unrealistic distances in a pro-
tein model, much like the atom clash detection steps in the PDB validation
pipeline [Read et al., 2011, Gore et al., 2012, 2017]. This could be further val-
idated by progressively increasing the distance of each atom from the center
of mass of the proteins.

43

4.4. Protein-Specific Descriptors Are Inexpensive, High-Quality Descriptor
Functions

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Distances
ρP = 0.97
ρS = 0.99

Angles
ρP = 0.41
ρS = 0.55

Gaussian Noise
Linear Kernel

Distances
ρP = 0.97
ρS = 1.0

Angles
ρP = 0.39
ρS = 0.5

Gaussian Noise
RBF Kernel σ= 1

Distances
ρP = 0.97
ρS = 1.0

Angles
ρP = 0.4
ρS = 0.59

Gaussian Noise
RBF Kernel σ= 10−5

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Distances
ρP = 0.99
ρS = 0.99

Angles
ρP = 0.98
ρS = 1.0

Shear
Linear Kernel

Distances
ρP = 0.99
ρS = 1.0

Angles
ρP = 0.69
ρS = 0.63

Shear
RBF Kernel σ= 1

Distances
ρP = 0.99
ρS = 1.0

Angles
ρP = 0.95
ρS = 1.0

Shear
RBF Kernel σ= 10−5

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Distances
ρP = 0.98
ρS = 1.0

Angles
ρP = 0.98
ρS = 1.0

Taper
Linear Kernel

Distances
ρP = 0.99
ρS = 1.0

Angles
ρP = 0.89
ρS = 1.0

Taper
RBF Kernel σ= 1

Distances
ρP = 0.99
ρS = 1.0

Angles
ρP = 0.97
ρS = 1.0

Taper
RBF Kernel σ= 10−5

0 25 50 75 100
Perturbation (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Distances
ρP = 0.35
ρS = 0.37

Angles
ρP = 0.99
ρS = 1.0

Twist
Linear Kernel

0 25 50 75 100
Perturbation (%)

Distances
ρP = 0.96
ρS = 0.97

Angles
ρP = 0.94
ρS = 1.0

Twist
RBF Kernel σ= 1

0 25 50 75 100
Perturbation (%)

Distances
ρP = 0.95
ρS = 0.95

Angles
ρP = 0.99
ρS = 1.0

Twist
RBF Kernel σ= 10−5

Protein Descriptor
Distance Histogram Dihedral Angles Histogram

Figure 4.7: MMD vs. perturbations (in % of the maximum values shown in Table 3.1) using
the two novel protein descriptors shown in Section 3.3.2. Each row has a corresponding
perturbation type. Each column also corresponds to a different kernel and kernel parameter
configuration. Those descriptors behave very well overall, with the dihedral angles descrip-
tors being particularly sensitive to Gaussian noise. The distance histogram exhibits higher
inter-run variance when subject to twisting pertubations.

44

4.5. MMD from Learned Embeddings

Kernel σMMD

Linear Kernel 0.091
RBF (σ = 1e − 05) 0.089
RBF (σ = 0.0001) 0.092
RBF (σ = 0.001) 0.093
RBF (σ = 0.01) 0.093
RBF (σ = 0.1) 0.095
RBF (σ = 1) 0.235
RBF (σ = 10.0) 0.447

Table 4.5: σMMD values for the MMD using the ESM learned embedding. σMMD > 0.1 are
in bold. These findings corroborate the correlation coefficients shown in Figure 4.8: using a
linear kernel or an RBF kernel withσ < 0.1, we get σMMD < 0.1, we obtain higher quality
(here, more robust) metrics, since σMMD is relatively low.

4.5 MMD from Learned Embeddings

As we noted in Section 2.7, the only constraint on some of the input vectors
is that they need to be in Rd. Additionally, as noted at the end of Section
4.3.2, there has been much progress in the development of learned embed-
dings. Finally, due to some of the shortcomings of the Weisfeiler-Lehman
kernel highlighted in Section 4.3.2, we wanted to investigate the representa-
tive power of learned embeddings in MMD, the result of which are shown in
Figure 4.8. In this figure, we see that choosing an RBF kernel with σ ≤ 0.01
or a linear kernel results in excellent correlation coefficients with ρP = 0.94
and ρS ≥ 0.96 across kernels with σ ≤ 0.01. The standard deviation of
the MMD across this range of kernels is also reasonable, with σMMD < 0.1
across the linear kernel and RBF kernel with σ < 0.1 (see Table 4.5 for de-
tails). Further work should focus on different kinds of perturbations applied
to sequences and see if correlation coefficients stay consistent across kernel
configurations. Results conducted by Kucera et al. [2022] suggest that this
is not the case, highlighting the need for further work.

45

4.5. MMD from Learned Embeddings

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

ESM
ρP = 0.94
ρS = 0.97

RBF Kernel σ= 1 · 10−5

ESM
ρP = 0.94
ρS = 0.97

RBF Kernel σ= 0.0001

ESM
ρP = 0.94
ρS = 0.97

RBF Kernel σ= 0.001

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

ESM
ρP = 0.94
ρS = 0.96

RBF Kernel σ= 0.01

ESM
ρP = 0.91
ρS = 0.91

RBF Kernel σ= 0.1

0.00 0.02 0.04 0.06 0.08 0.10
Mutation Probability

ESM
ρP = 0.57
ρS = 0.58

RBF Kernel σ= 1

0.00 0.02 0.04 0.06 0.08 0.10
Mutation Probability

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

ESM
ρP = 0.14
ρS = 0.28

RBF Kernel σ= 10

0.00 0.02 0.04 0.06 0.08 0.10
Mutation Probability

ESM
ρP = 0.95
ρS = 0.98

Linear Kernel

Figure 4.8: MMD vs. mutation probability using the ESM learned embeddings with various
kernels. The correlation coefficients of the resulting MMDs with RBF kernels with σ < 1 and
the linear kernel are high, therefore making them good configurations for sequences. This
analysis should be complemented by complementary sequence-specific perturbations – see
Section 5.2.3 for details.

46

4.6. Topological Descriptors and Kernels

Perturbation Type Kernel σMMD

gaussian noise Multi scale kernel 0.017
Persistence Fisher Kernel 0.013

shear Multi scale kernel 0.025
Persistence Fisher Kernel 0.016

taper Multi scale kernel 0.014
Persistence Fisher Kernel 0.016

twist Multi scale kernel 0.044
Persistence Fisher Kernel 0.024

Table 4.6: σMMD values for the MMD using the persitence Fisher kernel (PSK) and the multi
scale kernel (MSK).

4.6 Topological Descriptors and Kernels

Figure 4.9 shows the behavior of both the MSK and PFK. Overall, we can
see that they are among the best performing metrics in this thesis, with high
correlations and low inter-run variation. The PFK seems to perform the best
based on the correlation coefficients, with ρP > 0.95 and ρS = 1 across per-
turbation types – while the the MSK shows ρP > 0.93 and ρS > 0.99. The
PFK also has slightly lower σMMD values than the MSK with σMMD, with a
maximum of 0.024 vs 0.044 for the MSK – see Table 4.6. Additionally, when
looking at each perturbation type, we seem to have σMMD, PSK < σMMD, MSK
except for the tapering perturbation type, where there is a 0.02 difference
σMMD, PSK < σMMD, MSK. These differences in kernel performance are mi-
nor, however, and both kernels perform consistently really well compared
to the alternative configurations explored in this thesis. Another last find-
ing related to the difference between the two kernels is that with identical
bandwidths and perturbation level, the MSK seems to be consistently higher
than the PFK. Therefore, if a more sensitive MMD configuration is required,
the MSK might be preferred.

While the current TDA workflow cannot detect changes in node labels in
the current setting, hence not being able to detect mutations, we will show
in Section 5.3.2 how this could be alleviated. For computational reasons,
we did not compute variations of different kernel parameters, although one
could speed up the operation by precomputing the kernel matrices, and only
subsequently multiplying the matrix by different constants (i.e. implement a
modified version of the speed up trick explored in Appendix A.5 of O’Bray
et al. [2022]).

47

4.6. Topological Descriptors and Kernels

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

PFK
ρP = 0.95
ρS = 1.0

MSK
ρP = 0.93
ρS = 1.0

Gaussian Noise

PFK
ρP = 0.99
ρS = 1.0

MSK
ρP = 0.96
ρS = 1.0

Shear

0.00 0.25 0.50 0.75 1.00
Perturbation (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

PFK
ρP = 0.95
ρS = 1.0

MSK
ρP = 0.91
ρS = 1.0

Taper

0.00 0.25 0.50 0.75 1.00
Perturbation (%)

PFK
ρP = 0.99
ρS = 1.0

MSK
ρP = 0.99
ρS = 0.99

Twist
Kernel

Persistence Fisher Kernel
Multi-scale kernel

Figure 4.9: MMD vs. Perturbation (in % of the maximum values shown in Table 3.1) using the
MSK and persistence Fisher kernel. For the PFK, both the kernel bandwidth parameter and
the Fisher bandwidth parameter are set to 1. For the MSK (MSK), the bandwidth parameter
is also set to 1. Overall, the correlation coefficients for those kernels are very high and show
little inter-run variance, which is also supported by the σMMD values in Table 4.6.

48

4.7. Runtime

4.7 Runtime

One of the desiderata of MMD is efficiency, i.e. a low computational com-
plexity (see Section 2.5). As such, we report the various computation times
for each of the important elements of the pipelines outlined in this thesis.
The summary of all execution times can be found in Table 4.7.

First, we see that one computation stands out: computing the Vietoris-Rips
filtration of a point cloud. Together with a large memory footprint, the
Vietoris-Rips filtration is expensive to compute (3332s in our benchmarks),
due to a runtime of O(n3(k+2)), where k is the number of dimensions (here,
k = 3) and n the number of points [Adams et al., 2018]. Although some
optimizations have been carried out by Ripser Bauer [2021], the software
used to compute the Vietoris-Rips filtration, it remains very expensive to
compute and does not enjoy the benefits of hardware acceleration through
e.g. a GPU due to the difficulty of parallelizing such a filtration.

Second, computing the distance histogram and dihedral angles histogram
are the fastest descriptors to compute (28s for the former and 4s for the
latter), making them suitable to evaluate large collections of generated pro-
teins. Other graph descriptors are also reasonably fast to compute (35-175s
in our benchmarks, see Table 4.7), but they depend on the settings used to
extract the graphs, and, generally, the runtime increases in the number of
edges of the graph.

Third, the kernels used in this study all have reasonable runtimes, but we
note the particular efficiency of the RBF and linear kernel (< 7.7ms in our
benchmarks) compared to the persistence Fisher, multi-scale and Weisfeiler-
Lehman kernel. In addition, the PFK ran thee times slower (35s) than the
MSK (11s). The implications of these runtimes will be further explored when
making recommendations to the practioner in Section 5.2.

49

4.7. Runtime

Operation Execution Time

Descriptor Functions

Vietoris-Rips Filtration 3332 s
ESM Embedding 163 s
Degree Distribution Histogram (32Å-graph) 35 s
Clustering Coefficient Histogram (32Å-graph) 175 s
Laplacian Spectrum Histogram (32Å-graph) 35 s
Distance Histogram 28 s
Dihedral Angles Histogram 4 s

Kernels

Weisfeiler-Lehman Kernel (4 iterations) 32 s
Persistence Fisher Kernel 35 s
Multi-Scale Kernel 11 s
RBF Kernel 1.7 ms
Linear Kernel 7.7 ms

Table 4.7: Runtime and computational complexity of the various elements of the pipeline.
These timings are obtained by executing the operation on 100 samples spread across 10 CPU
cores from an Intel Xeon Gold 6254 CPU clocked at 3.10GHz.

50

4.8. Summary

4.8 Summary

In this chapter, we present the results of the behavior of MMD under various
configurations and subject to different types of perturbations. We start by
examining the graph descriptors used in the literature to evaluate generative
graph models (4.1). For those descriptors, we notice that the correlation co-
efficients generally behave well, with the exception of the degree histogram,
which shows lower correlations and in some cases higher standard devia-
tions, making it the least expressive and robust of all descriptors for graph
representations of proteins (Section 4.1.1 and 4.1.2). We also examined the
influence of the choice of kernel, and observed that the RBF kernel with
σ < 0.1 and the linear kernel showed high correlation coefficients, but that
those coefficients drop sharply when increasing σ > 0.1, which likely due
to the scale of the various descriptors, and for which increasing σ results
in oversmoothing (Section 4.1.1). We then investigated the quality of the
extracted graphs following different graph extraction techniques and pa-
rameters (Section 4.2). In Section 4.2.1, we established that ε-graphs were
often better to use based on the correlation coefficient distribution. Next, in
Section 4.2.2, we established that lower ε values yielded more stable MMD
configurations. To wrap up our discussion of the combinations of descriptor
and kernel traditionally used in the literature, we concluded in Section 4.2.3
that at lower perturbation regimes, higher values of the normalized MMD
were reached by graphs constructed with a lower ε threshold.

We then moved on to our discussion of the Weisfeiler-Lehman kernel, which
is a kernel operating directly on graphs, and noted it’s low relative qual-
ity compared to MMD configured with graph descriptors, both in terms
of correlation and standard deviation (Section 4.3.1). Further, we noted no
increase in normalized MMD in low regimes of perturbation for MMDs con-
figured with the Weisfeiler-Lehman kernel 4.3.2.

Next, we examined the protein-specific descriptor functions that we devised
for use in MMD (Section 4.4). We found that both the dihedral angles (Sec-
tion 4.4.1) and the distance histograms (4.4.2) were appropriate protein de-
scriptors, although they investigate different aspects of the protein topology
(bond angles and interatomic distances, respectively).

We briefly examined sequence embeddings in Section 4.5 and although the
early mutation results seem promising, more work needs to be done to prop-
erly assess MMD configurations applied to sequences.

We discuss the last set of MMD configurations in Section 4.6, where we find
that kernels operating on persistence diagrams tend to work exceptionally
well to capture point cloud perturbations. We noted that the MSK was slight
more sensitive (i.e. the resulting MMDs were consistently higher for this
kernel at any given perturbation level) and but slightly less well performing

51

4.8. Summary

than the PFK in terms of correlation and standard deviation, although those
differences were minor.

Finally, we conclude this chapter with a summary of the runtime of the var-
ious elements of the computational pipleine to obtain MMD values (Section
4.7), and note that (i) the Vietoris-Rips filtration is excessively slow to com-
pute, (ii) that the protein descriptors are particularly fast to compute, and
(iii) comment on the various kernel runtimes.

52

Chapter 5

Discussion

In this chapter, we discuss the findings of this thesis presented in Chapter
4, which we will summarize in Section 5.1. We then formulate a set of
recommendations in Section 5.2, and finally highlight some limitations and
future directions of research in Section 5.3.

5.1 Key Findings

Overall, we found that MMDs show high correlation coefficients on graphs
extracted from proteins (see Section 4.1). This finding is somewhat sur-
prising considering recent findings indicating that MMD seems often me
unstable on synthetic graphs such as Erdös-Rényi graphs, Watts-Strogatz
graphs, and Barabási–Albert graphs under some combinations of perturba-
tion types, kernels and descriptors [O’Bray et al., 2022]. While we found con-
figurations of MMD with low correlations and high σMMD (see for instance
Figure 4.1 upper left pane with the degree histogram and the Weisfeiler-
Lehman kernel-based MMDs where protein graphs are subject to rewiring,
see Figure 4.6), such MMD configurations were not prevalent. We hypoth-
esize that this is due to the highly structured nature of the graphs used in
this thesis (see Figure 5.1 for an example).

Furthermore, we found that the correlation coefficients and standard devi-
ation of MMD configurations were greatly influenced by the graph repre-
sentation extracted from the protein. Namely, for ε graphs (which overall
seemed more stable than k-NN graphs, see Figure 4.3), the higher the ε
value to extract the graph, the lower the correlation to the perturbation ap-
plied (Figure 4.4).

Next, we introduced in Section 3.3.2 two novel protein-specific descriptors
that can be used in MMD. In Section 4.4, we show that those descriptors are
both fast to compute (Table 4.7) and are able to detect point cloud perturba-
tions with high fidelity (Figure 4.7, see also Section 4.4 for a more detailed
discussion).

We found that the Weisfeiler-Lehman kernel, introduced in Section 3.3.3

53

5.2. MMD in Practice: Recommendations

Figure 5.1: Example 8-Å-graph extracted from a protein versus Erdös-Rényi graph with the
same number of nodes and edges. The protein entry used here to obtain the 8-Å graph is an
uncharacterized protein (UniProtKB ID: A0A6Q8PFQ6). We chose this protein for illustrative
purposes because it was the shortest protein found in the human proteome as predicted by
the AlphaFold2 model. The self-loops shown in the protein graph are present in all graph
extraction techniques used in this thesis.

applied to MMD was able to detect perturbations unable to be detected by
traditional graph descriptors such as point mutations, which are relevant
for the protein domain (see Section 4.3). However, the resulting MMD meta
metrics obtained using the Weisfeiler-Lehman kernel were not as high as for
other MMD configurations used in this thesis (see Section 4.3.1 for a detailed
examination). Furthermore, we found that Weisfeiler-Lehman-based MMD
configurations are not sensitive (i.e. the normalize MMD does not increase)
when lower levels of perturbation are applied (see Figure 4.6). This can
be alleviated by using an alternative descriptor such as the ESM protein
embedding introduced in Section 2.5, which is more sensitive (i.e. requires
less perturbation to reach higher normalized MMD values) to lower rates of
point mutation (see Figure 4.8).

We analyzed the MMD obtained from kernels operating on persistence di-
agrams in Section 4.6, which show excellent meta metric performance since
MMD values leveraging topological kernels both exhibit high correlations
to point cloud perturbations and low σMMD. While unable to detect point
mutations, we propose an alternative to be topological investigation of such
point clouds in Section 5.3.2.

5.2 MMD in Practice: Recommendations

Leveraging those key findings, we now formulate a set of recommendations
for a practitioner who needs to evaluate a generative protein model using
one of the protein representations highlighted above.

54

5.2. MMD in Practice: Recommendations

5.2.1 Setting Up Appropriate Baselines

Overall, we advise the practitioner to carefully evaluate certain baselines
when possible. The first baseline would be to evaluate the MMD between
different i.i.d. samples of the reference distribution to establish the range of
MMD to be expected in the best case, which we refer to as the positive control.
We conducted such positive controls for various MMD configurations in
Appendix A.4. From there, an accurate assessment of the quality of the
model can be made. If the kernel and data representation allows it, it is also
advisable to establish a negative control. This would show the worst possible
performance between any two distributions. If this is not possible, as is
the case in this thesis (e.g. there is no negative control for all MMD values
perturbed using the Gaussian noise), it is useful to examine cases of extreme
perturbations and compare the resulting MMD values to those. Such an
assessment can provide a surrogate for the negative control and confers a
sense of scale for the particular problem tackled. As with discriminative
models, it is also useful to compare the MMD obtained from the generated
model with other MMDs obtained from other models used in the literature
to make comparative benchmarks of performance. In such a context, taking
into account the values of σMMD to establish the robustness of a particular
MMD configuration is important to establish the reliability of the resulting
MMD values.

Moreover, since the MMD statistic is the basis for a kernel two-sample test
[Gretton et al., 2012] (see also Section 2.6), provided the kernel is power-
ful enough and can be computed with reasonable computational resources,
one can estimate a p-value from the statistic between the model’s generated
distribution and the empirical distribution.

5.2.2 Taking MMD Sensitivity into Consideration

Depending on the stage of modeling and the coarseness of the desired sam-
ples, one might choose different MMD configurations. As we have shown
in Figure 4.4 and discussed in Section 4.2, choosing a lower threshold ε to
extract ε-graphs from a protein point cloud results in a higher sensitivity
to a host of perturbation. In practice, this means that the lower the ε, the
better the MMD will be at discerning perturbed (i.e. generated) samples
from reference samples. This might be desirable if one needs highly similar
distributions of graphs. However, it can sometimes be desirable to relax this
requirement, e.g. to explore a larger part of the design landscape or make a
more approximate assessment of the generated samples for model selection
purposes.

In addition, when choosing an MMD configuration, one should also inves-
tigate the magnitude of inter-run variance as a proxy for robustness, since
the possible ranges of MMD values can be too wide to make any assessment

55

5.3. Limitations and Future Directions

as to the quality of the generated samples in the real-world. This can be
achieved either by running perturbation experiments as we did in this the-
sis, or by sampling subsets of the generated and real data to estimate how
much a particular MMD configuration varies from one subset to another.

5.2.3 Assessing Realistic Proteins

Some key findings of this study can be useful is in the context of assessing
realistic proteins. Defining realistic proteins take on a myriad of aspects:
i.e. are the generated protein sequences realistic? In this case, one might
use a Weisfeiler-Lehman kernel or an ESM embedding to answer this. The
literature, however, suggests that using embeddings does not yield the same
optimal kernel parameters depending on the perturbation applied to the
sequence. As such, it is recommended to use a spectrum kernel [Leslie
et al., 2002] for sequences (see Kucera et al. [2022], Section 4.1). There are,
however, other aspects of proteins to consider, the most important of which
is their 3D shape. For this purpose, the protein-specific descriptors devised
in this thesis and introduced in Section 3.3.2 whose results are shown in
Section 4.4, Figure 4.7 can be used. This way, an unusual angle or abnormal
interatomic distance distribution observed in the data will be reflected in the
MMD value.

5.2.4 Choosing the Right Kernel and Kernel Parameters

In this thesis, we consistently observed that the linear kernel and RBF ker-
nels with σ < 0.01 were often effective to detect perturbations and have
shown increased correlations and lower standard deviations. Conversely,
σ > 1 often resulted in insensitive and unstable MMD values. When in-
vestigating the mean distance distribution between the various embeddings
of data points (Appendix A.3), we can see that this is because the order of
magnitude of the data descriptors is consistently higher than this threshold,
and choosing a threshold that is excessively high results in oversmoothing.
We discuss the order of magnitude of the data and its impact on the choice
of σ in Appendix A.3 as well.

5.3 Limitations and Future Directions

We summarized the main findings of this thesis (Section 5.1) and formulated
a set of recommendations to the practitioner (Section 5.2). We finish this
chapter by highlighting important limitations of this thesis.

56

5.3. Limitations and Future Directions

5.3.1 Establishing Pseudo-Negative Controls

In Section 5.2.1, we highlighted the necessity of a positive control. While
this is possible for certain kernels (e.g. for the aforementioned spectrum
kernel, see Kucera et al. [2022]), many of the settings discussed in this thesis
do not have such a negative control. While one could use absolute MMD
values of perturbed sets of proteins as a reference for subpar performance,
it is still highly recommended to find appropriate pathological cases for
specific applications to estimate what a worst-case MMD value might take,
i.e. establish a pseudo-negative control.

5.3.2 Limitations and Future Directions of TDA in MMD

One of the novel applications of TDA discussed in this thesis is its adop-
tion in MMD by computing the kernel on two collections of point clouds,
hence leveraging the shape of the proteins in the computation of MMD. Two
challenges could potentially be prohibitive in adopting this approach. The
first is computation time (see Table 4.7 and discussion in Section 4.7): the
Vietoris-Rips filtration is expensive to compute. The second drawback is ex-
pressivity: the vanilla version of the Vietoris-Rips filtration is not sensitive
to amino acid changes. Both issues could be tackled by dividing each point
cloud into 20 different points cloud (1 for each type of amino acid) follow-
ing a similar approach as was done for atoms, which has been shown to
be powerful [Jiang et al., 2021]. The benefits of this approach are two-fold.
On the one hand, it makes the Vietoris-Rips filtration sensitive to changes
in the amino acids in addition to shape-related changes. On the other hand,
it speeds up computation time, because each point cloud is more sparsely
populated (see Section 4.7 for details), and because each amino acid-specific
point cloud can be computed in parallel.

5.3.3 MMD and Mode Collapse

Mode collapse and mode dropping are the two distinctive and common
failure modes of generative models [Salimans et al., 2016]. We define mode
collapse as the situation when a particular type of generated output (i.e.
intra-mode outputs) lacks variety. Mode drop refers to the situation when
some modes of the data are not represented in the generated output. Both
arise when implementing common generative model architectures such as
GANs. Although some methods have been devised to tackle such issues for
GANs [Arjovsky et al., 2017, Goodfellow et al., 2014], it remains a challenge
that needs to be tackled by suitable evaluation measures. Since MMD takes
the average of kernel matrices (see Equation 2.11), we anticipate its potential
to detect mode collapse is limited, since MMD is invariant to changes that
do not affect the mean of the distributions to be compared.

57

5.4. Summary

While others have simulated such pathologies in synthetic datasets by man-
ually changing the composition of each mode and investigating evaluation
metrics’ behaviour to it [Thompson et al., 2022], applying such mode-related
perturbations to protein datasets have yet to be tackled and are beyond the
scope of this thesis. One method that could be used to investigate such
situations would be to modify the composition of various protein families,
within which proteins share structural similarities. To simulate mode col-
lapse, one could impoverish the number of proteins within a given family.
To simulate mode drop, one could remove those proteins entirely from the
distribution. Defining protein families could be achieved by looking at evo-
lutionary links between proteins using for instance CATH database [Orengo
et al., 1997]. Alternatively, one could also use structural hierarchies to define
protein families using the SCOP database [Murzin et al., 1995].

5.3.4 Kernel Composition

Kernel composition is a mechanism by which one can chain kernel functions
to combine different representations of data points by either multiplying or
adding kernel matrices. Although we did not investigate kernel composi-
tion here, because we wanted to assess the expressive power of individual
kernels and representations, a practitioner could combine those to obtain an
even richer descriptors combining the advantages of various MMD config-
urations in this thesis. As such, a practitioner might consider TDA-derived
kernels together with protein-specific descriptors to capture global proper-
ties of proteins while ensuring that bond geometry is not violated between
residues. Note that this approach would also have the effect of propagating
any lack of robustness of one of the kernels in the chain to the composed ker-
nel, which could potentially be nefarious. Overall, we recommend to choose
which aspects of proteins are particularly important to capture based on
the application, and select a range of descriptor functions and kernels that
capture those aspects appropriately.

5.4 Summary

In Section 5.1, we show that the MMD on the real-world graphs used in
this thesis is more stable than for synthetic graphs used in the literature.
We highlight the sensitivity of MMD to the underlying parameters used to
extract graph representations of proteins. We then discuss the novel, compu-
tationally efficient, and expressive novel protein descriptors. Furthermore,
we summarize the findings related to the graph kernels, namely that they
seem to not be the most appropriate kernels for MMD based on correlation
and standard deviation meta-metrics. We close this section with a discus-
sion on TDA-derived kernels in MMD, which seem to be excellent kernels
despite being less inefficient.

58

5.4. Summary

In Section 5.2, we first advise the practitioner to establish a positive control
to estimate what a best-case MMD value could be. Secondly, if conditions al-
low, one can also establish a negative control to estimate a worst-case MMD
value. We also redirect the practitioner to our findings to use representations
that are more or less susceptible to perturbations depending on the required
fidelity of generated samples to the reference distribution. We then move on
to discuss the various aspects that constitute the assessment of what makes
a realistic protein. We conclude our recommendations with relevant kernel
choices.

We outline the limitations of this thesis in Section 5.3 by starting off with
discussing the often unfeasible crafting of negative controls. We then move
on to discuss the limitations of a particular set of MMD configurations using
TDA and how to potentially solve it. We then highlight the fact that MMD
is insensitive to generative model pathologies that do not affect the mean of
the distributions due to the averaging of the kernel matrices. We close our
discussion by highlighting the composability of the kernels, which could
greatly expand the building blocks highlighted in this thesis in future work.

59

Chapter 6

Conclusion

In this thesis, we performed a meta-evaluation of metrics based on MMD
for protein generative models. We first examined known configurations of
MMD, specifically by extracting graphs and using common descriptor func-
tions such as the degree distribution, laplacian spectrum and clustering co-
efficient histogram to obtain a fixed-length vector, which we can then feed
to appropriate kernels such as the linear kernel and the Gaussian kernel.

We then expanded the configurations of MMD to include a kernel that op-
erates directly on graphs: the Weisfeiler-Lehman kernel, which we optimize
to decrease runtime complexity on sparse graphs such as those used here.
Furthermore, we used topological kernels such as the MSK and the persis-
tence Fisher kernel to capture topological features of the protein. Finally,
we designed two new protein-specific descriptors: the interatomic distance
histogram and the dihedral angle histogram, which were inspired by the
validation pipeline of Protein Data Bank.

Overall, we find that the majority of MMD configurations performed well
with respect to the meta-metrics of expressivity and robustness, i.e. corre-
lation coefficients and standard deviations. We hypothesize that the highly
structured nature of the graphs used here explain why our MMD configu-
rations behaved more predictably than those in O’Bray et al. [2022]’s pertur-
bation experiments, where synthetic, more unstructured graphs were inves-
tigated.

Furthermore, we found that the procedure by which graphs were extracted
from proteins had a sizeable influence on the resulting sensitivity of MMD
to lower regimes of perturbations. For instance, a lower value of ε results in
MMD values that were more sensitive to perturbations.

While the Weisfeiler-Lehman kernel performed relatively poorly on the spe-
cific graphs extracted in this thesis, we found that MMD configurations
leveraging topological representations and the protein-specific descriptor
functions behaved well under all appropriate perturbation regimes. How-
ever, the runtime of TDA-related workflows were substantially higher than
the others, while the protein-specific descriptors we introduced here were

60

among the fastest to compute.

The approach devised in this thesis has several limitations. First, a negative
control cannot always be established, i.e. a worst-case MMD - practitioners
then have to be satisfied with a highly perturbed set of proteins as a proxy
for poor performance. One of the major drawbacks of MMD is that it is
in general not sensitive to model pathologies that do not affect the average
kernel similarity between samples, e.g. when mode collapse occurs.

To conclude, MMD forms the basis of a powerful computational platform
to evaluate generative models. Configured with a powerful combination of
representations, descriptor functions, and kernels, MMD could hopefully
accelerate the design of even better generative models for protein design
applications and beyond.

61

Appendix A

Appendix

A.1 Influence of Kernel Parameters on Sensitivity to
Perturbations of k-NN Graphs

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Clustering
ρP = 0.85
ρS = 0.98

Degree
ρP = 0.73
ρS = 0.82

Laplacian
ρP = 0.76
ρS = 0.86

RBF Kernel σ = 0.0001

Clustering
ρP = 0.85
ρS = 0.98

Degree
ρP = 0.73
ρS = 0.82

Laplacian
ρP = 0.78
ρS = 0.86

RBF Kernel σ = 0.001

Clustering
ρP = 0.85
ρS = 0.98

Degree
ρP = 0.73
ρS = 0.82

Laplacian
ρP = 0.86
ρS = 0.96

RBF Kernel σ = 0.01

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Clustering
ρP = 0.85
ρS = 0.98

Degree
ρP = 0.72
ρS = 0.82

Laplacian
ρP = 0.93
ρS = 0.98

RBF Kernel σ = 0.1

Clustering
ρP = 0.87
ρS = 0.94

Degree
ρP = 0.72
ρS = 0.82

Laplacian
ρP = 0.44
ρS = 0.92

RBF Kernel σ = 1

Clustering
ρP = 0.38
ρS = 0.38

Degree
ρP = 0.58
ρS = 0.61

Laplacian
ρP = 0.38
ρS = 0.38

RBF Kernel σ = 100

0 20 40 60 80 100
Perturbation (%)

0.0

0.2

0.4

0.6

0.8

1.0

N
or

m
ali

ze
d

M
M

D

Clustering
ρP = 0.38
ρS = 0.38

Degree
ρP = 0.4
ρS = 0.4

Laplacian
ρP = 0.38
ρS = 0.38

RBF Kernel σ = 1000

0 20 40 60 80 100
Perturbation (%)

Clustering
ρP = 0.38
ρS = 0.38

Degree
ρP = 0.38
ρS = 0.39

Laplacian
ρP = 0.38
ρS = 0.38

RBF Kernel σ = 10000

0 20 40 60 80 100
Perturbation (%)

Clustering
ρP = 0.85
ρS = 0.98

Degree
ρP = 0.77
ρS = 0.85

Laplacian
ρP = 0.4
ρS = 0.71

Linear Kernel

Descriptor
Clustering Histogram
Degree Histogram
Laplacian Spectrum Histogram

Figure A.1: MMD vs. Gaussian Noise Perturbation (in %) for various graph descriptors and
kernel parameters of the 2-NN-graphs. The kernel here is shown on top of each subplots.

62

A.2. Weisfeiler-Lehman Runtime Improvements for Sparse Graphs

A.2 Weisfeiler-Lehman Runtime Improvements for Sparse
Graphs

In this thesis, we devised a three-pronged method to speed up the runtime
of the Weisfeiler-Lehman kernel by approximately 80% by leveraging the
sparsity of the graphs used here. The three elements contributing to the
speedup are the following:

1. Our implementation parallelizes the execution of the Weisfeiler-Lehman
hash computations since each graph’s hash can be computed indepen-
dently prior to computing the kernel.

2. It also parallelizes the computation of similarity of graphs in RKHS by
computing batches of the inner products independently.

3. When comparing graphs, lots of CPU cycles are spent processing po-
sitions/hashes that do not overlap between Weisfeiler-Lehman his-
tograms. As such, we manually loop over the overlapping keys, out-
performing NumPy dot product-based implementations on collections
of sparse graphs.

We tested, covered, and open-sourced the implementation of this novel ap-
proach on GitHub, and is available at the following URL: https://github.
com/pjhartout/fastwlk.

A.3 Distance Distribution of Descriptor Functions

To explain why certain Gaussian configurations tend to work better than
others, it is useful to compute the pairwise distance of unperturbed proteins
to get an idea of how far away in e.g. Euclidean space each embedding is
from one another. Figure A.2 shows the pairwise Euclidean distance distri-
bution within an unperturbed set of proteins. We can see that this varies
quite a bit from descriptor to descriptor and that this distribution is also
affected by the parameters used to extract the graphs in the case of graph
descriptors. This probably explains why we see different behaviors for dif-
ferent kernels in Figure 4.2.

Although we did not do so in this thesis, one could leverage this information
to set the σ parameter for the RBF kernel by centering it around the mean,
and (logarithmically) scaling it up and down to find configurations with the
highest correlations.

63

https://github.com/pjhartout/fastwlk
https://github.com/pjhartout/fastwlk

A.3. Distance Distribution of Descriptor Functions

0

2

4

6

8

Eu
cli

de
an

 d
ist

an
ce

Dihedral Angles Histogram

0.0

0.1

0.2

0.3

Interatomic Distance Histogram

0

20

40

60

80

100

Eu
cli

de
an

 d
ist

an
ce

Clustering Coefficient Histogram

0.0

0.2

0.4

0.6

0.8

1.0
Degree Distribution Histogram

0

200

400

600

800

Laplacian Spectrum Histogram

ε-value
8
32

Figure A.2: Mean Euclidean distance between typical descriptor vectors used in this thesis.
The top row shows the mean distance between each of the protein descriptors introduced in
this thesis while the bottom row shows the distance between each graph descriptor for two
ε-graph extraction settings.

64

A.4. MMD Baselines for Various Configurations

A.4 MMD Baselines for Various Configurations

Baseline MMD distributions between two sets of 100 unperturbed proteins
with various MMD configurations are shown here. This motivates why the
practicioner should always make a positive control, as various MMD config-
urations can have vastly different ranges depending on the configurations.

65

A.4. MMD Baselines for Various Configurations

-0.5

0.0

0.5

1.0

M
M

Ds

1e-5 Kernel = sigma=1e-05

-0.00005

0.00000

0.00005

0.00010

Kernel = sigma=0.0001

-0.00075

-0.00050

-0.00025

0.00000

0.00025

0.00050

0.00075

0.00100

Kernel = sigma=0.001

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008

M
M

Ds

Kernel = sigma=0.01

-0.005

0.000

0.005

0.010

0.015
Kernel = sigma=0.1

-0.0015

-0.0010

-0.0005

0.0000

0.0005

Kernel = sigma=1

-0.0015

-0.0010

-0.0005

0.0000

0.0005

M
M

Ds

Kernel = sigma=100.0

-0.0015

-0.0010

-0.0005

0.0000

0.0005

Kernel = sigma=1000.0

linear_kernel
Kernel

-0.0015

-0.0010

-0.0005

0.0000

0.0005

Kernel = sigma=10000.0

linear_kernel
Kernel

-0.0010

-0.0005

0.0000

0.0005

M
M

Ds

Kernel = sigma=100000.0

linear_kernel
Kernel

-5.0

-2.5

0.0

2.5

5.0

7.5

10.0

12.5
Kernel = linear_kernel

Figure A.3: Clustering coefficient MMD baselines for two different ε values. The left side of
each violin plot is obtained with ε = 8 and the right side with ε = 32. Everywhere a plot
contains “sigma” in the title, the RBF kernel with the indicated parameter was used.

66

A.4. MMD Baselines for Various Configurations

-0.5

0.0

0.5

1.0

M
M

Ds

1e-7 Kernel = sigma=1e-05

-0.5

0.0

0.5

1.0

1e-6 Kernel = sigma=0.0001

-0.5

0.0

0.5

1.0

1e-5 Kernel = sigma=0.001

-0.00005

0.00000

0.00005

0.00010

M
M

Ds

Kernel = sigma=0.01

-0.0005

0.0000

0.0005

0.0010

Kernel = sigma=0.1

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

0.008
Kernel = sigma=1

-0.006

-0.004

-0.002

0.000

0.002

0.004

0.006

M
M

Ds

Kernel = sigma=10.0

-0.0010

-0.0005

0.0000

0.0005
Kernel = sigma=100.0

-0.00125

-0.00100

-0.00075

-0.00050

-0.00025

0.00000

0.00025

Kernel = sigma=1000.0

linear_kernel
Kernel

-0.00125

-0.00100

-0.00075

-0.00050

-0.00025

0.00000

0.00025

M
M

Ds

Kernel = sigma=10000.0

linear_kernel
Kernel

-0.00125

-0.00100

-0.00075

-0.00050

-0.00025

0.00000

0.00025

Kernel = sigma=100000.0

linear_kernel
Kernel

-0.35

-0.30

-0.25

-0.20

-0.15

Kernel = linear_kernel

Figure A.4: Degree distribution histogram MMD baselines for two different ε values. The
left side of each violin plot is obtained with ε = 8 and the right side with ε = 32. Everywhere
a plot contains “sigma” in the title, the RBF kernel with the indicated parameter was used.

67

A.4. MMD Baselines for Various Configurations

-0.00005

0.00000

0.00005

0.00010

M
M

Ds

Kernel = sigma=1e-05

-0.0005

0.0000

0.0005

0.0010

Kernel = sigma=0.0001

-0.0050

-0.0025

0.0000

0.0025

0.0050

0.0075

Kernel = sigma=0.001

-0.010

-0.005

0.000

0.005

0.010

0.015

M
M

Ds

Kernel = sigma=0.01

-0.004

-0.002

0.000

0.002

0.004
Kernel = sigma=0.1

-0.00125

-0.00100

-0.00075

-0.00050

-0.00025

0.00000

0.00025

Kernel = sigma=1

-0.00125

-0.00100

-0.00075

-0.00050

-0.00025

0.00000

0.00025

M
M

Ds

Kernel = sigma=10.0

-0.00125

-0.00100

-0.00075

-0.00050

-0.00025

0.00000

0.00025

Kernel = sigma=100.0

-0.00125

-0.00100

-0.00075

-0.00050

-0.00025

0.00000

0.00025

Kernel = sigma=1000.0

linear_kernel
Kernel

-0.00125

-0.00100

-0.00075

-0.00050

-0.00025

0.00000

0.00025

M
M

Ds

Kernel = sigma=10000.0

linear_kernel
Kernel

-0.00125

-0.00100

-0.00075

-0.00050

-0.00025

0.00000

0.00025

Kernel = sigma=100000.0

linear_kernel
Kernel

-2000

-1000

0

1000

2000

3000

4000
Kernel = linear_kernel

Figure A.5: Laplacian spectrum histogram MMD baselines for two different ε values. The
left side of each violin plot is obtained with ε = 8 and the right side with ε = 32.Everywhere
a plot contains “sigma” in the title, the RBF kernel with the indicated parameter was used.

68

A.4. MMD Baselines for Various Configurations

-2

0

2

4

6

8

M
M

Ds

1e-6 Kernel = sigma=1e-05

-2

0

2

4

6

8
1e-5 Kernel = sigma=0.0001

-0.0002

0.0000

0.0002

0.0004

0.0006

0.0008
Kernel = sigma=0.001

-0.002

0.000

0.002

0.004

0.006

M
M

Ds

Kernel = sigma=0.01

-0.0025

0.0000

0.0025

0.0050

0.0075

0.0100

0.0125

Kernel = sigma=0.1

-0.000050

-0.000025

0.000000

0.000025

0.000050

0.000075

0.000100

Kernel = sigma=1

0

2

4

6

M
M

Ds

1e-9 Kernel = sigma=10.0

-0.04

-0.02

0.00

0.02

0.04

Kernel = sigma=100.0

-0.04

-0.02

0.00

0.02

0.04

Kernel = sigma=1000.0

linear_kernel
Kernel

-0.04

-0.02

0.00

0.02

0.04

M
M

Ds

Kernel = sigma=10000.0

linear_kernel
Kernel

-0.04

-0.02

0.00

0.02

0.04

Kernel = sigma=100000.0

linear_kernel
Kernel

0

5

10

15
Kernel = linear_kernel

Figure A.6: ESM-based MMD baselines for two different ε values. The left side of each violin
plot is obtained with ε = 8 and the right side with ε = 32. Everywhere a plot contains
“sigma” in the title, the RBF kernel with the indicated parameter was used.

69

A.4. MMD Baselines for Various Configurations

-0.010

-0.005

0.000

0.005

0.010

0.015
M

M
Ds

PFK

-10

-5

0

5

10

15

20

25
MSK

Figure A.7: TDA-based MMD baselines for two different ε values. The left side of each violin
plot is obtained with ε = 8 and the right side with ε = 32. PFK: persistence Fisher kernel.
MSK: multi-scale kernel.

1 2 3 5 10
Iterations

-0.002

-0.001

0.000

0.001

0.002

0.003

0.004

M
M

Ds

Figure A.8: TDA-based MMD baselines for two different ε values. The left side of each violin
plot is obtained with ε = 8 and the right side with ε = 32. PFK: persistence Fisher kernel.
MSK: multi-scale kernel. The different iterations correspond to the different iterations of the
Weisfeiler-Lehman algorithm.

70

Bibliography

Henry Adams, Tegan Emerson, Michael Kirby, Rachel Neville, Chris Peter-
son, Patrick Shipman, Sofya Chepushtanova, Eric Hanson, Francis Motta,
and Lori Ziegelmeier. Persistence images: A stable vector representation
of persistent homology. The Journal of Machine Learning Research, 18(1):
218–252, 2017.

Henry Adams, Ethan Coldren, and Sean Willmot. The Persistent Homology
of Cyclic Graphs. arXiv preprint arXiv:1812.03374, 2018.

Jay Alammar. The Illustrated Transformer. https://jalammar.github.io/
illustrated-transformer/, 2018.

Erik J Amézquita, Michelle Y Quigley, Tim Ophelders, Elizabeth Munch, and
Daniel H Chitwood. The shape of things to come: Topological data anal-
ysis and biology, from molecules to organisms. Developmental Dynamics,
2020.

Namrata Anand and Possu Huang. Generative Modeling for Protein Struc-
tures. In Proceedings of the 31st Conference on Advances in Neural Information
Processing Systems, 2018.

Rushil Anirudh, Vinay Venkataraman, Karthikeyan Natesan Ramamurthy,
and Pavan Turaga. A Riemannian Framework for Statistical Analysis of
Topological Persistence Diagrams. In Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition Workshops, pages 68–76, 2016.

Martin Arjovsky, Soumith Chintala, and Léon Bottou. Wasserstein GAN. In
Proceedings of the International Conference on Machine Learning, 2017.

Ulrich Bauer. Ripser: efficient computation of Vietoris-Rips persistence
barcodes. Journal of Applied and Computational Topology, 2021. doi:
10.1007/s41468-021-00071-5.

Leonard E Baum and George Sell. Growth transformations for functions on
manifolds. Pacific Journal of Mathematics, 27(2):211–227, 1968.

71

https://jalammar.github.io/illustrated-transformer/
https://jalammar.github.io/illustrated-transformer/

Bibliography

Leonard E Baum, Ted Petrie, George Soules, and Norman Weiss. A max-
imization technique occurring in the statistical analysis of probabilistic
functions of Markov chains. The Annals of Mathematical Statistics, 41(1):
164–171, 1970.

Yonatan Belinkov and James Glass. Analysis methods in neural language
processing: A survey. Transactions of the Association for Computational Lin-
guistics, 7:49–72, 2019.

Eyal Betzalel, Coby Penso, Aviv Navon, and Ethan Fetaya. A Study on the
Evaluation of Generative Models. arXiv preprint arXiv:2206.10935, 2022.

Surojit Biswas, Grigory Khimulya, Ethan C Alley, Kevin M Esvelt, and
George M Church. Low-N protein engineering with data-efficient deep
learning. Nature Methods, 18(4):389–396, 2021.

Sam Bond-Taylor, Adam Leach, Yang Long, and Chris George Willcocks.
Deep Generative Modelling: A Comparative Review of VAEs, GANs, Nor-
malizing Flows, Energy-Based and Autoregressive Models. IEEE Transac-
tions on Pattern Analysis & Machine Intelligence, 2021.

Karsten Borgwardt, Elisabetta Ghisu, Felipe Llinares-López, Leslie O’Bray,
and Bastian Alexander Rieck. Graph kernels: State-of-the-art and future
challenges. Foundations and Trends in Machine Learning, 13(5-6):531–712,
2020.

Karsten M Borgwardt, Arthur Gretton, Malte J Rasch, Hans-Peter Kriegel,
Bernhard Schölkopf, and Alex J Smola. Integrating structured biological
data by Kernel Maximum Mean Discrepancy. Bioinformatics, 22(14):e49–
e57, 2006.

Fan R. K. Chung. Spectral Graph Theory. American Mathematical Society,
1997.

Nicola De Cao and Thomas Kipf. MolGAN: An implicit generative model
for small molecular graphs. Proceedings of the International Conference on
Machine Learning Workshop on Theoretical Foundations and Applications of
Deep Generative Models, 2018.

Tamal K Dey, Herbert Edelsbrunner, and Sumanta Guha. Computational
Topology. Contemporary Mathematics, 223:109–144, 1999.

Christopher C Drovandi and Anthony N Pettitt. Likelihood-free Bayesian
estimation of multivariate quantile distributions. Computational Statistics
& Data Analysis, 55(9):2541–2556, 2011.

Herbert Edelsbrunner and John Harer. Computational Topology: An Introduc-
tion. American Mathematical Society, 2010.

72

Bibliography

Michael P Fay and Michael A Proschan. Wilcoxon-Mann-Whitney or t-test?
On assumptions for hypothesis tests and multiple interpretations of deci-
sion rules. Statistics surveys, 4:1, 2010.

Daniel Freedman and Chao Chen. Algebraic Topology for Computer Vision.
Computer Vision, pages 239–268, 2009.

Robert Ghrist. Barcodes: The persistent topology of data. Bulletin of the
American Mathematical Society, 45(1):61–75, 2008.

Ian Goodfellow, Jean Pouget-Abadie, Mehdi Mirza, Bing Xu, David Warde-
Farley, Sherjil Ozair, Aaron Courville, and Yoshua Bengio. Generative
Adversarial Nets. In Proceedings of the 27th Conference on Advances in Neural
Information Processing Systems, 2014.

Swanand Gore, Sameer Velankar, and Gerard J Kleywegt. Implementing an
X-ray validation pipeline for the Protein Data Bank. Acta Crystallographica
Section D: Biological Crystallography, 68(4):478–483, 2012.

Swanand Gore, Eduardo Sanz Garcı́a, Pieter MS Hendrickx, Aleksandras
Gutmanas, John D Westbrook, Huanwang Yang, Zukang Feng, Kumaran
Baskaran, John M Berrisford, Brian P Hudson, et al. Validation of struc-
tures in the Protein Data Bank. Structure, 25(12):1916–1927, 2017.

Arthur Gretton, Karsten M Borgwardt, Malte J Rasch, Bernhard Schölkopf,
and Alexander Smola. A kernel two-sample test. The Journal of Machine
Learning Research, 13(1):723–773, 2012.

Aditya Grover, Aaron Zweig, and Stefano Ermon. Graphite: Iterative gener-
ative modeling of graphs. In Proceedings of the International Conference on
Machine Learning, pages 2434–2444. PMLR, 2019.

Xiaojie Guo and Liang Zhao. A Systematic Survey on Deep Generative
Models for Graph Generation. arXiv preprint arXiv:2007.06686, 2020.

Daniel Hesslow, Niccoló Zanichelli, Pascal Notin, Iacopo Poli, and Debora
Marks. RITA: a Study on Scaling Up Generative Protein Sequence Models.
arXiv preprint arXiv:2205.05789, 2022.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler,
and Sepp Hochreiter. GANs trained by a two time-scale update rule con-
verge to a local Nash equilibrium. In Proceedings of the 31st International
Conference on Neural Information Processing Systems, pages 6629–6640, 2017.

Viktor Hornak, Robert Abel, Asim Okur, Bentley Strockbine, Adrian Roit-
berg, and Carlos Simmerling. Comparison of multiple Amber force fields
and development of improved protein backbone parameters. Proteins:
Structure, Function, and Bioinformatics, 65(3):712–725, 2006.

73

Bibliography

Po-Ssu Huang, Yih-En Andrew Ban, Florian Richter, Ingemar Andre, Robert
Vernon, William R Schief, and David Baker. RosettaRemodel: a general-
ized framework for flexible backbone protein design. PloS one, 6(8):e24109,
2011.

Jenq-Neng Hwang, Shyh-Rong Lay, and Alan Lippman. Nonparametric
multivariate density estimation: a comparative study. IEEE Transactions
on Signal Processing, 42(10):2795–2810, 1994.

John Ingraham, Vikas Garg, Regina Barzilay, and Tommi Jaakkola. Gener-
ative Models for Graph-Based Protein Design. In Proceedings of the 32nd
Conference on Advances in Neural Information Processing Systems, 2019.

Michael Jendrusch, Jan O Korbel, and S Kashif Sadiq. AlphaDesign: A de
novo protein design framework based on AlphaFold. bioRxiv, 2021.

Yi Jiang, Dong Chen, Xin Chen, Li Tangyi, Wei Guo-Wei, and Feng Pan.
Topological representations of crystalline compounds for the machine-
learning prediction of materials properties. NPJ Computational Materials, 7
(1), 2021.

John Jumper, Richard Evans, Alexander Pritzel, Tim Green, Michael Fig-
urnov, Olaf Ronneberger, Kathryn Tunyasuvunakool, Russ Bates, Au-
gustin Žı́dek, Anna Potapenko, et al. Highly accurate protein structure
prediction with AlphaFold. Nature, 596(7873):583–589, 2021.

Diederik P Kingma and Max Welling. Auto-Encoding Variational Bayes. In
Proceedings of the International Conference on Learning Representations, 2013.

Thomas N Kipf and Max Welling. Semi-Supervised Classification with
Graph Convolutional Networks. In Proceedings of the International Con-
ference on Learning Representations, 2016.

Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and
Yusuke Iwasawa. Large Language Models are Zero-Shot Reasoners. arXiv
preprint arXiv:2205.11916, 2022.

Tim Kucera, Matteo Togninalli, and Laetitia Meng-Papaxanthos. Conditional
generative modeling for de novo protein design with hierarchical func-
tions. Bioinformatics, 38(13):3454–3461, 2022.

Tam Le and Makoto Yamada. Persistence Fisher Kernel: A Riemannian
Manifold Kernel for Persistence Diagrams. In Proceedings of the 32nd Inter-
national Conference on Neural Information Processing Systems, pages 10028–
10039, 2018.

74

Bibliography

Julia Koehler Leman, Brian D Weitzner, Steven M Lewis, Jared Adolf-
Bryfogle, Nawsad Alam, Rebecca F Alford, Melanie Aprahamian, David
Baker, Kyle A Barlow, Patrick Barth, et al. Macromolecular modeling and
design in Rosetta: recent methods and frameworks. Nature methods, 17(7):
665–680, 2020.

C Leslie, E Eskin, and WS Noble. The Spectrum Kernel: A String Kernel for
SVM Protein Classification. In Pacific Symposium on Biocomputing. Pacific
Symposium on Biocomputing, pages 564–575, 2002.

Yujia Li, Oriol Vinyals, Chris Dyer, Razvan Pascanu, and Peter
Battaglia. Learning Deep Generative Models of Graphs. arXiv preprint
arXiv:1803.03324, 2018.

Renjie Liao, Yujia Li, Yang Song, Shenlong Wang, William L Hamilton,
David Duvenaud, Raquel Urtasun, and Richard Zemel. Efficient Graph
Generation with Graph Recurrent Attention Networks. In Proceedings of
the 33rd International Conference on Neural Information Processing Systems,
pages 4255–4265, 2019.

Romain Lopez, Adam Gayoso, and Nir Yosef. Enhancing scientific discover-
ies in molecular biology with deep generative models. Molecular Systems
Biology, 16(9):e9198, 2020.

Ali Madani, Bryan McCann, Nikhil Naik, Nitish Shirish Keskar, Nam-
rata Anand, Raphael R Eguchi, Po-Ssu Huang, and Richard Socher.
ProGen: Language Modeling for Protein Generation. arXiv preprint
arXiv:2004.03497, 2020.

Ali Madani, Ben Krause, Eric R Greene, Subu Subramanian, Benjamin P
Mohr, James M Holton, Jose Luis Olmos, Caiming Xiong, Zachary Z Sun,
Richard Socher, et al. Deep neural language modeling enables functional
protein generation across families. bioRxiv, 2021.

Venkata Subramaniya Maddhuri, Raghavendra Sai, Genki Terashi, Aashish
Jain, Yuki Kagaya, and Daisuke Kihara. Protein contact map refinement
for improving structure prediction using generative adversarial networks.
Bioinformatics, 37(19):3168–3174, 2021.

Elie Mengin. Weisfeiler-Lehman Graph Kernel for Bi-
nary Function Analysis. https://blog.quarkslab.com/

weisfeiler-lehman-graph-kernel-for-binary-function-analysis.

html, 2019.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton,
Jan Eric Lenssen, Gaurav Rattan, and Martin Grohe. Weisfeiler and Le-
man Go Neural: Higher-Order Graph Neural Networks. In Proceedings of
the 33rd AAAI Conference on Artificial Intelligence, pages 4602–4609, 2019.

75

https://blog.quarkslab.com/weisfeiler-lehman-graph-kernel-for-binary-function-analysis.html
https://blog.quarkslab.com/weisfeiler-lehman-graph-kernel-for-binary-function-analysis.html
https://blog.quarkslab.com/weisfeiler-lehman-graph-kernel-for-binary-function-analysis.html

Bibliography

Alexey G Murzin, Steven E Brenner, Tim Hubbard, and Cyrus Chothia.
SCOP: a structural classification of proteins database for the investigation
of sequences and structures. Journal of molecular biology, 247(4):536–540,
1995.

Tapaswini Nayak, Lingaraja Jena, Pranita Waghmare, Bhaskar C Hari-
nath, et al. Identification of potential inhibitors for mycobacterial uri-
dine diphosphogalactofuranose-galactopyranose mutase enzyme: A novel
drug target through in silico approach. International Journal of Mycobacte-
riology, 7(1):61, 2018.

Chenhao Niu, Yang Song, Jiaming Song, Shengjia Zhao, Aditya Grover, and
Stefano Ermon. Permutation Invariant Graph Generation via Score-Based
Generative Modeling. In Proceedings of the International Conference on Arti-
ficial Intelligence and Statistics, pages 4474–4484. PMLR, 2020.

Leslie O’Bray, Max Horn, Bastian Rieck, and Karsten Borgwardt. Evalua-
tion metrics for graph generative models: Problems, pitfalls, and practical
solutions. In Proceedings of the International Conference on Learning Represen-
tations, 2022.

CM O’Connor and JU Adams. 2.4 The Functions of Proteins Are Determined
by Their Three-Dimensional Structures, in The Essentials of Cell Biology.
Cambridge, MA: NPG Education, 2010.

Christine A Orengo, Alex D Michie, Susan Jones, David T Jones, Mark B
Swindells, and Janet M Thornton. CATH–a hierarchic classification of
protein domain structures. Structure, 5(8):1093–1109, 1997.

Henri Poincaré. Analysis Situs. Gauthier-Villars, 1895.

Krishna Mohan Poluri and Khushboo Gulati. Protein Engineering Tech-
niques: Gateways to Synthetic Protein Universe. SpringerBriefs in Forensic
and Medical Bioinformatics, 2017.

Kristina Preuer, Philipp Renz, Thomas Unterthiner, Sepp Hochreiter, and
Günter Klambauer. Fréchet ChemNet Distance: A Metric for Generative
Models for Molecules in Drug Discovery. Journal of Chemical Information
and Modeling, 58(9):1736–1741, 2018.

G.N. Ramachandran, C. Ramakrishnan, and V. Sasisekharan. Stereochem-
istry of Polypeptide Chain Configurations. Journal of Molecular Biol-
ogy, 7(1):95–99, 1963. ISSN 0022-2836. doi: https://doi.org/10.1016/
S0022-2836(63)80023-6.

Aditya Ramesh, Prafulla Dhariwal, Alex Nichol, Casey Chu, and Mark
Chen. Hierarchical Text-Conditional Image Generation with CLIP Latents.
arXiv preprint arXiv:1803.03324, 2022.

76

Bibliography

Glen D Rayner and Helen L MacGillivray. Numerical maximum likelihood
estimation for the g-and-k and generalized g-and-h distributions. Statistics
and Computing, 12(1):57–75, 2002.

Randy J Read, Paul D Adams, W Bryan Arendall, Axel T Brunger, Paul Em-
sley, Robbie P Joosten, Gerard J Kleywegt, Eugene B Krissinel, Thomas
Lütteke, Zbyszek Otwinowski, et al. A New Generation of Crystallo-
graphic Validation Tools for the Protein Data Bank. Structure, 10(19):1395–
1412, 2011.

Jan Reininghaus, Stefan Huber, Ulrich Bauer, and Roland Kwitt. A Stable
Multi-Scale Kernel for Topological Machine Learning. In IEEE Conference
on Computer Vision and Pattern Recognition, CVPR 2015, pages 4741–4748.
IEEE Computer Society, 2015.

Donatas Repecka, Vykintas Jauniskis, Laurynas Karpus, Elzbieta Rembeza,
Irmantas Rokaitis, Jan Zrimec, Simona Poviloniene, Audrius Laurynenas,
Sandra Viknander, Wissam Abuajwa, et al. Expanding functional protein
sequence spaces using generative adversarial networks. Nature Machine
Intelligence, 3(4):324–333, 2021.

Adam J Riesselman, John B Ingraham, and Debora S Marks. Deep genera-
tive models of genetic variation capture the effects of mutations. Nature
Methods, 15(10):816–822, 2018.

Alexander Rives, Joshua Meier, Tom Sercu, Siddharth Goyal, Zeming Lin,
Jason Liu, Demi Guo, Myle Ott, C Lawrence Zitnick, Jerry Ma, et al. Bio-
logical structure and function emerge from scaling unsupervised learning
to 250 million protein sequences. Proceedings of the National Academy of
Sciences, 118(15):e2016239118, 2021.

Chitwan Saharia, William Chan, Saurabh Saxena, Lala Li, Jay Whang, Emily
Denton, Seyed Kamyar Seyed Ghasemipour, Burcu Karagol Ayan, S. Sara
Mahdavi, Rapha Gontijo Lopes, Tim Salimans, Jonathan Ho, David J Fleet,
and Mohammad Norouzi. Photorealistic Text-to-Image Diffusion Mod-
els with Deep Language Understanding. arXiv preprint arXiv:2205.11487,
2022.

Tim Salimans, Ian Goodfellow, Wojciech Zaremba, Vicki Cheung, Alec Rad-
ford, and Xi Chen. Improved Techniques for Training GANs. Proceedings
of the 29th Conference on Advances in Neural Information Processing Systems,
2016.

Axel Sauer, Katja Schwarz, and Andreas Geiger. StyleGAN-XL: Scaling
StyleGAN to Large Diverse Datasets. arXiv preprint arXiv:2202.00273, 2022.

77

Bibliography

Allen J Schwenk. Almost All Trees Are Cospectral. New Directions in the
Theory of Graphs, pages 275–307, 1973.

Nino Shervashidze, Pascal Schweitzer, Erik Jan van Leeuwen, Kurt
Mehlhorn, and Karsten M Borgwardt. Weisfeiler-Lehman Graph Kernels.
Journal of Machine Learning Research, 12:2539–2561, 2011.

Alexey Strokach and Philip M Kim. Deep generative modeling for protein
design. Current Opinion in Structural Biology, 72:226–236, 2022.

Alexey Strokach, David Becerra, Carles Corbi-Verge, Albert Perez-Riba, and
Philip M Kim. Fast and Flexible Protein Design Using Deep Graph Neural
Networks. Cell Systems, 11(4):402–411, 2020.

Christian Szegedy, Vincent Vanhoucke, Sergey Ioffe, Jon Shlens, and Zbig-
niew Wojna. Rethinking the Inception Architecture for Computer Vision.
In Proceedings of the IEEE Conference on Computer Vision and Pattern Recog-
nition, 2016.

L Theis, A van den Oord, and M Bethge. A note on the evaluation of gen-
erative models. In Proceedings of the International Conference on Learning
Representations, pages 1–10, 2016.

Rylee Thompson, Boris Knyazev, Elahe Ghalebi, Jungtaek Kim, and Gra-
ham W Taylor. On Evaluation Metrics for Graph Generative Models. In
Proceedings of the International Conference on Learning Representations, 2022.

Kathryn Tunyasuvunakool, Jonas Adler, Zachary Wu, Tim Green, Michal
Zielinski, Augustin Žı́dek, Alex Bridgland, Andrew Cowie, Clemens
Meyer, Agata Laydon, et al. Highly accurate protein structure prediction
for the human proteome. Nature, 596(7873):590–596, 2021.

Mihaly Varadi, Stephen Anyango, Mandar Deshpande, Sreenath Nair, Cindy
Natassia, Galabina Yordanova, David Yuan, Oana Stroe, Gemma Wood,
Agata Laydon, et al. AlphaFold Protein Structure Database: Massively
expanding the structural coverage of protein-sequence space with high-
accuracy models. Nucleic Acids Research, 50(D1):D439–D444, 2022.

Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones,
Aidan N Gomez, Łukasz Kaiser, and Illia Polosukhin. Attention is all
you need. In Proceedings of the 30th IEEE conference on computer vision and
pattern recognition workshops, 2017.

Leopold Vietoris. Über den höheren Zusammenhang kompakter Räume
und eine Klasse von zusammenhangstreuen Abbildungen. Mathematische
Annalen, 97(1):454–472, 1927.

78

Bibliography

Yajie Wang, Pu Xue, Mingfeng Cao, Tianhao Yu, Stephan T Lane, and
Huimin Zhao. Directed evolution: Methodologies and applications. Chem-
ical Reviews, 121(20):12384–12444, 2021.

Duncan J Watts and Steven H Strogatz. Collective dynamics of ‘small-world’
networks. Nature, 393(6684):440–442, 1998.

Eli N Weinstein and Debora Marks. A structured observation distribution
for generative biological sequence prediction and forecasting. In Interna-
tional Conference on Machine Learning, 2021.

Boris Weisfeiler and Andrei Lehman. The reduction of a graph to canonical
form and the algebra which appears therein. NTI, Series, 2(9):12–16, 1968.

Matthew J Wood and Jonathan D Hirst. Protein Secondary Structure Pre-
diction with Dihedral Angles. PROTEINS: Structure, Function, and Bioin-
formatics, 59(3):476–481, 2005.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How Powerful
are Graph Neural Networks? In Proceedings of the International Conference
on Learning Representations, 2018a.

Mengjia Xu. Understanding Graph Embedding Methods and Their Appli-
cations. SIAM Review, 63(4):825–853, 2021.

Qiantong Xu, Gao Huang, Yang Yuan, Chuan Guo, Yu Sun, Felix Wu, and
Kilian Weinberger. An empirical study on evaluation metrics of generative
adversarial networks. arXiv preprint arXiv:1806.07755, 2018b.

Sinan Yıldırım, Sumeetpal S Singh, Thomas Dean, and Ajay Jasra. Parameter
Estimation in Hidden Markov Models with Intractable Likelihoods Using
Sequential Monte Carlo. Journal of Computational and Graphical Statistics,
24(3):846–865, 2015.

Jiaxuan You, Rex Ying, Xiang Ren, William Hamilton, and Jure Leskovec.
GraphRNN: Generating Realistic Graphs with Deep Auto-regressive Mod-
els. In Proceedings of the International Conference on Machine Learning, 2018.

Jie Zhou, Ganqu Cui, Shengding Hu, Zhengyan Zhang, Cheng Yang,
Zhiyuan Liu, Lifeng Wang, Changcheng Li, and Maosong Sun. Graph
neural networks: A review of methods and applications. AI Open, 1:57–
81, 2020.

79

Declaration of originality

The signed declaration of originality is a component of every semester paper, Bachelor’s thesis,
Master’s thesis and any other degree paper undertaken during the course of studies, including the
respective electronic versions.

Lecturers may also require a declaration of originality for other written papers compiled for their
courses.
__

I hereby confirm that I am the sole author of the written work here enclosed and that I have compiled it
in my own words. Parts excepted are corrections of form and content by the supervisor.

Title of work (in block letters):

Authored by (in block letters):
For papers written by groups the names of all authors are required.

Name(s): First name(s):

With my signature I confirm that
− I have committed none of the forms of plagiarism described in the ‘Citation etiquette’ information

sheet.
− I have documented all methods, data and processes truthfully.
− I have not manipulated any data.
− I have mentioned all persons who were significant facilitators of the work.

I am aware that the work may be screened electronically for plagiarism.

Place, date Signature(s)

 For papers written by groups the names of all authors are

required. Their signatures collectively guarantee the entire
content of the written paper.

DESIGNING MEANINGFUL MEASURES TOEVALUATE
PROTEIN GENERATIVE MODELS

Hartout PhilipJean

Zurich Switzerland 11 7 22 ff

	Contents
	List of Figures
	List of Tables
	Introduction
	Background and Related Work
	Proteins
	Graphs
	Topological Data Analysis
	Generative Models
	The Evaluation Problem
	Maximum Mean Discrepancy
	Kernels
	Summary

	Methods
	Datasets
	Perturbations
	mmd Configurations
	Representations
	Descriptor Functions
	Kernels

	Experimental Setup
	Measuring the Quality of mmd Configurations
	Software Library Design

	Summary

	Results
	Overall mmd Behavior
	General observations on the correlation coefficients
	General observations on the standard deviations
	Influence of the choice of kernel

	Influence of the Graph Representation on mmd
	Comparing Graph Construction Technique
	Lower Values of Are More Stable
	Lower Values for Graph Contruction Are More Sensitive to Lower Perturbation Regimes

	Graph Kernels
	Quality of mmd Using Weisfeiler-Lehman
	Insensitivty in Low Perturbation Regimes

	Protein-Specific Descriptors Are Inexpensive, High-Quality Descriptor Functions
	Dihedral Angles Histograms
	α-Carbon Distance Histogram

	mmd from Learned Embeddings
	Topological Descriptors and Kernels
	Runtime
	Summary

	Discussion
	Key Findings
	mmd in Practice: Recommendations
	Setting Up Appropriate Baselines
	Taking mmd Sensitivity into Consideration
	Assessing Realistic Proteins
	Choosing the Right Kernel and Kernel Parameters

	Limitations and Future Directions
	Establishing Pseudo-Negative Controls
	Limitations and Future Directions of tda in mmd
	mmd and Mode Collapse
	Kernel Composition

	Summary

	Conclusion
	Appendix
	Influence of Kernel Parameters on Sensitivity to Perturbations of k-NN Graphs
	Weisfeiler-Lehman Runtime Improvements for Sparse Graphs
	Distance Distribution of Descriptor Functions
	mmd Baselines for Various Configurations

	Bibliography

